A generalized Frank-Wolfe method with "dual averaging" for strongly convex composite optimization

被引:0
|
作者
Zhao, Renbo [1 ]
Zhu, Qiuyun [2 ]
机构
[1] MIT, Operat Res Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
关键词
Generalized Frank-Wolfe method; Logistic fictitious play; Non-asymptotic analysis; Convex optimization;
D O I
10.1007/s11590-022-01951-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a simple variant of the generalized Frank-Wolfe method for solving strongly convex composite optimization problems, by introducing an additional averaging step on the dual variables. We show that in this variant, one can choose a simple constant step-size and obtain a linear convergence rate on the duality gaps. By leveraging the convergence analysis of this variant, we then analyze the local convergence rate of the logistic fictitious play algorithm, which is well-established in game theory but lacks any form of convergence rate guarantees. We show that, with high probability, this algorithm converges locally at rate O(1/t), in terms of certain expected duality gap.
引用
收藏
页码:1595 / 1611
页数:17
相关论文
共 50 条
  • [1] A generalized Frank–Wolfe method with “dual averaging” for strongly convex composite optimization
    Renbo Zhao
    Qiuyun Zhu
    [J]. Optimization Letters, 2023, 17 : 1595 - 1611
  • [2] Stochastic Frank-Wolfe for Composite Convex Minimization
    Locatello, Francesco
    Yurtsevert, Alp
    Fercoq, Olivier
    Cevhert, Volkan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets
    Garber, Dan
    Hazan, Elad
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 541 - 549
  • [4] Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets
    Kerdreux, Thomas
    Liu, Lewis
    Julien, Simon Lacoste
    Scieur, Damien
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Analysis of the Frank-Wolfe method for convex composite optimization involving a logarithmically-homogeneous barrier
    Zhao, Renbo
    Freund, Robert M.
    [J]. MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 123 - 163
  • [6] Primal-Dual Block Generalized Frank-Wolfe
    Lei, Qi
    Zhuo, Jiacheng
    Caramanis, Constantine
    Dhillon, Inderjit S.
    Dimakis, Alexandros G.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Generalized stochastic Frank-Wolfe algorithm with stochastic "substitute" gradient for structured convex optimization
    Lu, Haihao
    Freund, Robert M.
    [J]. MATHEMATICAL PROGRAMMING, 2021, 187 (1-2) : 317 - 349
  • [8] Adaptive Variant of the Frank-Wolfe Algorithm for Convex Optimization Problems
    Aivazian, G. V.
    Stonyakin, F. S.
    Pasechnyk, D. A.
    Alkousa, M. S.
    Raigorodsky, A. M.
    Baran, I. V.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 493 - 504
  • [9] A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe
    Locatello, Francesco
    Khanna, Rajiv
    Tschannen, Michael
    Jaggi, Martin
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 860 - 868
  • [10] Asynchronous Stochastic Frank-Wolfe Algorithms for Non-Convex Optimization
    Gu, Bin
    Xian, Wenhan
    Huang, Heng
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 737 - 743