Quasiaffine transforms of Hilbert space operators

被引:0
|
作者
Gamal, Maria F. [1 ]
Kerchy, Laszlo [2 ]
机构
[1] Russian Acad Sci, VA Steklov Inst Math, St Petersburg Branch, Fontanka 27, St Petersburg 191023, Russia
[2] Univ Szeged, Bolya Inst, Arad vertanuk tere 1, H-6720 Szeged, Hungary
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2023年 / 89卷 / 1-2期
关键词
Intertwining relations; Quasiaffine transform; Quasisimilarity; Normal operators; Isometries; Unilateral shifts;
D O I
10.1007/s44146-023-00057-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ampliation quasisimilarity was applied as a tool in Foias and Pearcy (J Funct Anal 219:134-142, 2005) to reduce the hyperinvariant subspace problem to a particular class of operators. The seemingly weaker pluquasisimilarity relation was introduced in Bercovici et al. (Acta Sci Math Szeged 85:681-691, 2019) and studied also in Kerchy (Acta Sci Math Szeged 86:503-520, 2020). The problem whether these two relations are actually equivalent is addressed in the present paper. The following more general, related question is studied in details: under what conditions is the operator A a quasiaffine transform of B, whenever A can be injected into B and A can be also densely mapped into B.
引用
收藏
页码:147 / 165
页数:19
相关论文
共 50 条
  • [1] Quasiaffine transforms of Hilbert space operators
    Maria F. Gamal’
    László Kérchy
    [J]. Acta Scientiarum Mathematicarum, 2023, 89 : 147 - 165
  • [2] Quasiaffine transforms of operators
    Jung, Il Bong
    Ko, Eungil
    Pearcy, Carl
    [J]. STUDIA MATHEMATICA, 2009, 193 (03) : 263 - 267
  • [3] QUASIAFFINE TRANSFORMS OF OPERATORS
    APOSTOL, C
    BERCOVICI, H
    FOIAS, C
    PEARCY, C
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1982, 29 (02) : 243 - 255
  • [4] ON AMPLIATION QUASIAFFINE TRANSFORMS OF OPERATORS
    Ko, Eungil
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 699 - 710
  • [5] Quasiaffine transforms of polynomially bounded operators
    Hari Bercovici
    Bebe Prunaru
    [J]. Archiv der Mathematik, 1998, 71 : 384 - 387
  • [6] Quasiaffine transforms of polynomially bounded operators
    Bercovici, H
    Prunaru, B
    [J]. ARCHIV DER MATHEMATIK, 1998, 71 (05) : 384 - 387
  • [7] Invariant subspaces and quasiaffine transforms of unitary operators
    Kubrusly, CS
    [J]. SEMIGROUPS OF OPERATORS: THEORY AND APPLICATIONS, 2000, 42 : 167 - 173
  • [8] On power bounded operators that are quasiaffine transforms of singular unitaries
    Gamal, Maria F.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 589 - 606
  • [9] On power bounded operators that are quasiaffine transforms of singular unitaries
    Maria F. Gamaľ
    [J]. Acta Scientiarum Mathematicarum, 2011, 77 (3-4): : 589 - 606
  • [10] A family of Wiener transforms associated with a pair of operators on Hilbert space
    Hayek, N.
    Srivastava, H. M.
    Gonzalez, B. J.
    Negrin, E. R.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (01) : 1 - 8