An upper bound for the least energy of a sign-changing solution to a zero mass problem

被引:0
|
作者
Clapp, Monica [1 ]
Maia, Liliane [2 ]
Pellacci, Benedetta [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Neurobiol, Campus Juriquilla,Blvd Juriquilla 3001, Queretaro 76230, Qro, Mexico
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, Brazil
[3] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
关键词
scalar field equation; zero mass; nodal solution; energy estimates; EXISTENCE; EQUATIONS; SYMMETRY;
D O I
10.1515/ans-2022-0065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation -Delta u = f(u), u is an element of D-1,D-2(R-N), where N >= 5 and the nonlinearity f is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12c(0) if N = 5, 6 and smaller than 10c(0) if N >= 7, where c(0) is the ground state energy.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 50 条