A Long-term Time Series Forecasting method with Multiple Decomposition

被引:0
|
作者
Wang, Yang [1 ]
Xhen, Xu [1 ]
Wang, Shuyang [2 ]
Jing, Yongjun [1 ]
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan, Ningxia, Peoples R China
[2] North Minzu Univ, Sch Elect & Informat Engn, Yinchuan, Ningxia, Peoples R China
关键词
Time Series Forecasting; Time Series Decomposition; Long-Term Trend Components;
D O I
10.1145/3603719.3603738
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In various real-world applications such as weather forecasting, energy consumption planning, and traffic flow prediction, time serves as a critical variable. These applications can be collectively referred to as time-series prediction problems. Despite recent advancements with Transformer-based solutions yielding improved results, these solutions often struggle to capture the semantic dependencies in time-series data, resulting predominantly in temporal dependencies. This shortfall often hinders their ability to effectively capture long-term series patterns. In this research, we apply time-series decomposition to address this issue of long-term series forecasting. Our method involves implementing a time-series forecasting approach with deep series decomposition, which further decomposes the long-term trend components generated after the initial decomposition. This technique significantly enhances the forecasting accuracy of the model. For long-term time-series forecasting (LTSF), our proposed method exhibits commendable prediction accuracy on four publicly available datasets-Weather, Electricity, Traffic, ILI-when compared to prevailing methods. The code for our method is accessible at https://github.com/wangyang970508/LSTF_MD.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Robformer: A robust decomposition transformer for long-term time series forecasting
    Yu, Yang
    Ma, Ruizhe
    Ma, Zongmin
    PATTERN RECOGNITION, 2024, 153
  • [2] Temporal patterns decomposition and Legendre projection for long-term time series forecasting
    Liu, Jianxin
    Ma, Tinghuai
    Su, Yuming
    Rong, Huan
    Khalil, Alaa Abd El-Raouf Mohamed
    Wahab, Mohamed Magdy Abdel
    Osibo, Benjamin Kwapong
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23407 - 23441
  • [3] CNformer: a convolutional transformer with decomposition for long-term multivariate time series forecasting
    Wang, Xingyu
    Liu, Hui
    Yang, Zhihan
    Du, Junzhao
    Dong, Xiyao
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20191 - 20205
  • [4] CNformer: a convolutional transformer with decomposition for long-term multivariate time series forecasting
    Xingyu Wang
    Hui Liu
    Zhihan Yang
    Junzhao Du
    Xiyao Dong
    Applied Intelligence, 2023, 53 : 20191 - 20205
  • [5] A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks
    Wang, Xingyu
    Liu, Hui
    Du, Junzhao
    Dong, Xiyao
    Yang, Zhihan
    APPLIED SOFT COMPUTING, 2023, 139
  • [6] A granular time series approach to long-term forecasting and trend forecasting
    Dong, Ruijun
    Pedrycz, Witold
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (13) : 3253 - 3270
  • [7] MDCNet: Long-term time series forecasting with mode decomposition and 2D convolution
    Su, Jing
    Xie, Dirui
    Duan, Yuanzhi
    Zhou, Yue
    Hu, Xiaofang
    Duan, Shukai
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [8] InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting
    Cao, Haizhou
    Huang, Zhenhao
    Yao, Tiechui
    Wang, Jue
    He, Hui
    Wang, Yangang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 6906 - 6915
  • [10] Periodformer: An efficient long-term time series forecasting method based on periodic attention
    Liang, Daojun
    Zhang, Haixia
    Yuan, Dongfeng
    Zhang, Minggao
    Knowledge-Based Systems, 2024, 304