Robust Tensor Completion via Capped Frobenius Norm

被引:12
|
作者
Li, Xiao Peng
Wang, Zhi-Yong [1 ]
Shi, Zhang-Lei [2 ]
So, Hing Cheung [1 ]
Sidiropoulos, Nicholas D. [3 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[3] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
关键词
Capped Frobenius norm; proximal block coordinate descent; robust recovery; tensor completion (TC); tensor ring; FACTORIZATION; IMAGE; MATRIX; OPTIMIZATION; TUTORIAL; TRACKING; RECOVERY; PCA;
D O I
10.1109/TNNLS.2023.3236415
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tensor completion (TC) refers to restoring the missing entries in a given tensor by making use of the low-rank structure. Most existing algorithms have excellent performance in Gaussian noise or impulsive noise scenarios. Generally speaking, the Frobenius-norm-based methods achieve excellent performance in additive Gaussian noise, while their recovery severely degrades in impulsive noise. Although the algorithms using the l(p)-norm (0 < p < 2) or its variants can attain high restoration accuracy in the presence of gross errors, they are inferior to the Frobenius-norm-based methods when the noise is Gaussian-distributed. Therefore, an approach that is able to perform well in both Gaussian noise and impulsive noise is desired. In this work, we use a capped Frobenius norm to restrain outliers, which corresponds to a form of the truncated least-squares loss function. The upper bound of our capped Frobenius norm is automatically updated using normalized median absolute deviation during iterations. Therefore, it achieves better performance than the l(p)-norm with outlier-contaminated observations and attains comparable accuracy to the Frobenius norm without tuning parameter in Gaussian noise. We then adopt the half-quadratic theory to convert the nonconvex problem into a tractable multivariable problem, that is, convex optimization with respect to (w.r.t.) each individual variable. To address the resultant task, we exploit the proximal block coordinate descent ( PBCD) method and then establish the convergence of the suggested algorithm. Specifically, the objective function value is guaranteed to be convergent while the variable sequence has a subsequence converging to a critical point. Experimental results based on real-world images and videos exhibit the superiority of the devised approach over several state-of-the-art algorithms in terms of recovery performance. MATLAB code is available at https://github.com/Li-X-P/Codeof-Robust-Tensor-Completion.
引用
收藏
页码:9700 / 9712
页数:13
相关论文
共 50 条
  • [1] Robust low tubal rank tensor completion via factor tensor norm minimization
    Jiang, Wei
    Zhang, Jun
    Zhang, Changsheng
    Wang, Lijun
    Qi, Heng
    PATTERN RECOGNITION, 2023, 135
  • [2] Matrix completion via capped nuclear norm
    Zhang, Fanlong
    Yang, Zhangjing
    Chen, Yu
    Yang, Jian
    Yang, Guowei
    IET IMAGE PROCESSING, 2018, 12 (06) : 959 - 966
  • [3] Low-Rank Tensor Completion for Image and Video Recovery via Capped Nuclear Norm
    Chen, Xi
    Li, Jie
    Song, Yun
    Li, Feng
    Chen, Jianjun
    Yang, Kun
    IEEE ACCESS, 2019, 7 : 112142 - 112153
  • [4] Completion of Traffic Matrix by Tensor Nuclear Norm Minus Frobenius Norm Minimization and Time Slicing
    Miyata, Takamichi
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [5] On Tensor Completion via Nuclear Norm Minimization
    Ming Yuan
    Cun-Hui Zhang
    Foundations of Computational Mathematics, 2016, 16 : 1031 - 1068
  • [6] On Tensor Completion via Nuclear Norm Minimization
    Yuan, Ming
    Zhang, Cun-Hui
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (04) : 1031 - 1068
  • [7] Matrix Completion via Schatten Capped p Norm
    Li, Guorui
    Guo, Guang
    Peng, Sancheng
    Wang, Cong
    Yu, Shui
    Niu, Jianwei
    Mo, Jianli
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 394 - 404
  • [8] Coupled Transformed Induced Tensor Nuclear Norm for Robust Tensor Completion
    Qin, Mengjie
    Lin, Zheyuan
    Wan, Minhong
    Zhang, Chunlong
    Gu, Jason
    Li, Te
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 476 - 483
  • [9] Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
    Qiu, Duo
    Bai, Minru
    Ng, Michael K.
    Zhang, Xiongjun
    NEUROCOMPUTING, 2021, 435 : 197 - 215
  • [10] MUSIC With Capped Frobenius Norm: Efficient Robust Direction-of-Arrival Estimator
    Li, Xiao Peng
    Liu, Zhaofeng
    Shi, Zhang-Lei
    So, Hing Cheung
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 8090 - 8103