Real and virtual environments have comparable spatial memory distortions after scale and geometric transformations

被引:0
|
作者
Zisch, Fiona E. [1 ,2 ,8 ]
Coutrot, Antoine [1 ,3 ]
Newton, Coco [1 ,4 ]
Murcia-Lopez, Maria [5 ]
Motala, Anisa [1 ]
Greaves, Jacob [1 ]
de Cothi, William [1 ,6 ]
Steed, Anthony [5 ]
Tyler, Nick [7 ]
Gage, Stephen A. [2 ]
Spiers, Hugo J. [1 ]
机构
[1] UCL, Inst Behav Neurosci, Dept Expt Psychol, London, England
[2] UCL, Bartlett Sch Architecture, London, England
[3] Univ Lyon, CNRS, UMR5205, UCBL,INSA Lyon,LIRIS, Lyon, France
[4] Univ Cambridge, Dept Clin Neurosci, Cambridge, England
[5] UCL, Dept Comp Sci, Virtual Environm & Comp Graph Grp, London, England
[6] UCL, Dept Cell & Dev Biol, London, England
[7] UCL, Dept Civil Environm & Geomat Engn, London, England
[8] UCL, Bartlett Sch Architecture, 22 Gordon St, London WC1H 0AY, England
基金
英国工程与自然科学研究理事会;
关键词
Virtual reality; cognitive maps; navigation; PATH-INTEGRATION; ENHANCE KNOWLEDGE; PLACE FIELDS; CUES; ORIENTATION; NAVIGATION; SPACE; CELLS; DETERMINANTS; CODE;
D O I
10.1080/13875868.2024.2303016
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Boundaries define space, impacting spatial memory and neural representations. Unlike rodents, impact in humans is often tested using desktop virtual-reality (VR). This lacks self-motion cues, diminishing path-integration input. We replicated a desktop-VR study testing boundary impact on spatial memory for object locations using a physical, desktop-VR, and head-mounted-display-VR environment. Performance was measured by comparing participant responses to seven spatial distribution models using geometric or walking-path metrics. A weighted-linear combination of geometric models and a "place-cell-firing" model performed best, with identical fits across environments. Spatial representation appears differentially influenced by different boundary changes, but similarly across virtual and physical environments.
引用
收藏
页码:115 / 143
页数:29
相关论文
共 50 条
  • [1] A geometric model of spatial distortions in virtual and augmented environments
    Chessa, Manuela
    Solari, Fabio
    [J]. 2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2018, : 55 - 60
  • [2] Preliminary findings on the effect of scale transformations on spatial memory in immersive and desktop virtual environments
    Lopez, Maria Murcia
    Zisch, Fiona
    Steptoe, William
    Spiers, Hugo
    Steed, Anthony
    [J]. COGNITIVE PROCESSING, 2015, 16 : S75 - S75
  • [3] Spatial memory of real environments, virtual environments, and maps.
    Montello, DR
    Hegarty, M
    Richardson, AE
    Waller, D
    [J]. HUMAN SPATIAL MEMORY: REMEMBERING WHERE, 2004, : 251 - 285
  • [4] Real and virtual environments, real and virtual memory
    Strong, GW
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1997, 20 (04) : 756 - +
  • [5] Spatial cognition in virtual and real environments
    Hunt, E
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 3393 - 3393
  • [6] Spatial strategies in real and virtual environments
    Tamas Makany
    Itiel E. Dror
    Edward S. Redhead
    [J]. Cognitive Processing, 2006, 7 (Suppl 1) : 63 - 63
  • [7] Spatial learning of goldfish - They have spatial memory comparable to rats.
    Saito, K
    Watanabe, S
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2000, 35 (3-4) : 235 - 235
  • [8] Spatial Navigation: Spatial Learning in Real and Virtual Environments
    Kelly, Debbie M.
    Gibson, Brett M.
    [J]. COMPARATIVE COGNITION & BEHAVIOR REVIEWS, 2007, 2 : 111 - 124
  • [9] ASSESSMENT OF SPATIAL MEMORY USING VIRTUAL ENVIRONMENTS
    Saveleva, Olga
    Menshikova, Galina
    [J]. PSYCHOPHYSIOLOGY, 2017, 54 : S92 - S92
  • [10] Spatial updating in superimposed real and virtual environments
    Wan, Xiaoang Irene
    Wang, Ranxiao Frances
    Crowell, James A.
    [J]. ATTENTION PERCEPTION & PSYCHOPHYSICS, 2009, 71 (01) : 42 - 51