共 50 条
Wiener Indices of Minuscule Lattices
被引:0
|作者:
Defant, Colin
[1
]
Feray, Valentin
[2
]
Nadeau, Philippe
[3
]
Williams, Nathan
[4
]
机构:
[1] Harvard Univ, Dept Math, Cambridge, MA 02139 USA
[2] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[3] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[4] Univ Texas Dallas, Richardson, TX USA
来源:
基金:
美国国家科学基金会;
关键词:
D O I:
10.37236/12002
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The Wiener index of a finite graph G is the sum over all pairs (p, q) of vertices of G of the distance between p and q. When P is a finite poset, we define its Wiener index as the Wiener index of the graph of its Hasse diagram. In this paper, we find exact expressions for the Wiener indices of the distributive lattices of order ideals in minuscule posets. For infinite families of such posets, we also provide results on the asymptotic distribution of the distance between two random order ideals.
引用
收藏
页数:23
相关论文