Wiener Indices of Minuscule Lattices

被引:0
|
作者
Defant, Colin [1 ]
Feray, Valentin [2 ]
Nadeau, Philippe [3 ]
Williams, Nathan [4 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02139 USA
[2] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[3] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[4] Univ Texas Dallas, Richardson, TX USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.37236/12002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index of a finite graph G is the sum over all pairs (p, q) of vertices of G of the distance between p and q. When P is a finite poset, we define its Wiener index as the Wiener index of the graph of its Hasse diagram. In this paper, we find exact expressions for the Wiener indices of the distributive lattices of order ideals in minuscule posets. For infinite families of such posets, we also provide results on the asymptotic distribution of the distance between two random order ideals.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] The CDE property for minuscule lattices
    Hopkins, Sam
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 152 : 45 - 103
  • [2] On Wiener and multiplicative Wiener indices of graphs
    Das, Kinkar Ch.
    Gutman, Ivan
    DISCRETE APPLIED MATHEMATICS, 2016, 206 : 9 - 14
  • [3] On Wiener and Terminal Wiener Indices of Trees
    Chen, Ya-Hong
    Zhang, Xiao-Dong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 591 - 602
  • [4] Reverse Wiener indices
    Balaban, AT
    Mills, D
    Ivanciuc, O
    Basak, SC
    CROATICA CHEMICA ACTA, 2000, 73 (04) : 923 - 941
  • [5] Altered Wiener indices
    Vukicevic, D
    Zerovnik, J
    ACTA CHIMICA SLOVENICA, 2005, 52 (03) : 272 - 281
  • [6] Variable Wiener indices
    Vukicevic, D
    Zerovnik, J
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2005, 53 (02) : 385 - 402
  • [7] On indices of Wiener and anti-Wiener type
    Vukicevic, Damir
    Sedlar, Jelena
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 290 - 298
  • [8] Flux Hamiltonians, Lie algebras, and root lattices with minuscule decorations
    Shankar, R.
    Burnell, F. J.
    Sondhi, S. L.
    ANNALS OF PHYSICS, 2009, 324 (02) : 267 - 295
  • [9] New indices based on the modified Wiener indices
    Vukicevic, D
    Zerovnik, J
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2003, (47) : 119 - 132
  • [10] Trees with extremal Wiener indices
    Wang, Sujuan
    Guo, Xiaofeng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (02) : 609 - 622