Zinc oxide nanorods electronically controlled terahertz modulator

被引:0
|
作者
Ye, Chuanxiang [1 ]
Wang, Jintao [2 ,3 ]
机构
[1] Shenzhen Inst Informat Technol, Dept Publ Courses, Shenzhen, Peoples R China
[2] Shenzhen Polytech Univ, Sch Elect & Commun Engn, Shenzhen, Peoples R China
[3] Shenzhen Polytech Univ, Sch Elect & Commun Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
nanorods; THz wave modulator; ZnO;
D O I
10.1002/mop.33956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metal oxides are commonly employed in terahertz (THz) modulator devices operating in the THz frequency band. These metal oxides, which rely on electronic control, exhibit a clear response to THz waves. The modulation of THz waves is achieved by applying an electric field directly onto the surface of ZnO nanorods and their metal dopants. This external electric field has the capability to modulate both the phase and transmittance of the THz wave. The devices based on Au-doped ZnO nanorods demonstrate a significant enhancement in modulation depth due to the incorporation of the localized surface plasmon effect. In the realm of active THz modulation, the velocity of electric modulation is enhanced while the required driving power is reduced. The primary focus of this research article is to present an analysis of the active modulation properties and the underlying principles of ZnO nanorods and their metallic dopants when subjected to an applied electric field. The modulation bandwidth range from 0.1 to 1.0 THz for our devices. The phase modulation of 0.866 rad and the transmittance modulation with the modulation depth of 0.4 was realized.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Controlled growth of zinc oxide nanorods synthesised by the hydrothermal method
    Mbuyisa, P. N.
    Ndwandwe, O. M.
    Cepek, C.
    THIN SOLID FILMS, 2015, 578 : 7 - 10
  • [2] Electrochemically Controlled Nanopore and Crystal Structure Evolution in Zinc Oxide Nanorods
    Shin, Weon Ho
    Hwang, Tae Hoon
    Huh, Yun Suk
    Choi, Jang Wook
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) : A2143 - A2147
  • [3] Controlled Growth of Zinc Oxide Nanorods by Aqueous-Solution Method
    Khusaimi, Z.
    Amizam, S.
    Mamat, M. H.
    Sahdan, M. Z.
    Ahmad, M. K.
    Abdullah, N.
    Rusop, M.
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2010, 40 (03) : 190 - 194
  • [4] Fabrication of zinc oxide nanorods
    Li, JY
    Chen, XL
    Li, H
    He, M
    Qiao, ZY
    JOURNAL OF CRYSTAL GROWTH, 2001, 233 (1-2) : 5 - 7
  • [5] Luminescence of zinc oxide nanorods
    Emel'chenko, G. A.
    Gruzintsev, A. N.
    Kulakov, A. B.
    Samarov, E. N.
    Karpov, I. A.
    Red'kin, A. N.
    Yakimov, E. E.
    Barthou, C.
    SEMICONDUCTORS, 2007, 41 (02) : 176 - 179
  • [6] Luminescence of zinc oxide nanorods
    G. A. Emel’chenko
    A. N. Gruzintsev
    A. B. Kulakov
    É. N. Samarov
    I. A. Karpov
    A. N. Red’kin
    E. E. Yakimov
    C. Barthou
    Semiconductors, 2007, 41 : 176 - 179
  • [7] Metasurface Terahertz Laser With Electronically-Controlled Polarization
    Chen, Daguan
    Xu, Luyao
    Curwen, Christopher A.
    Memarian, Mohammad
    Reno, John L.
    Itoh, Tatsuo
    Williams, Benjamin S.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [8] Terahertz Birefringence in Zinc Oxide
    Kim, Youngchan
    Ahn, Jaewook
    Kim, Bog G.
    Yee, Dae-Su
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (03)
  • [9] Effect of Electrolyte Conductivity on Controlled Electrochemical Synthesis of Zinc Oxide Nanotubes and Nanorods
    Abd-Ellah, Marwa
    Moghimi, Nafiseh
    Zhang, Lei
    Heinig, Nina F.
    Zhao, Liyan
    Thomas, Joseph P.
    Leung, K. T.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13): : 6794 - 6799
  • [10] Optically controlled graphene based terahertz modulator
    Dai, Zijie
    Yang, Jing
    Su, Qiang
    Qi, Pengfei
    Lu, Dan
    Li, Shuai
    Zhou, Langfeng
    Liu, Weiwei
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES V, 2018, 10826