PMPF: Point-Cloud Multiple-Pixel Fusion-Based 3D Object Detection for Autonomous Driving

被引:8
|
作者
Zhang, Yan [1 ]
Liu, Kang [1 ]
Bao, Hong [2 ]
Zheng, Ying [1 ]
Yang, Yi [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Beijing Union Univ, Coll Robot, Beijing 100101, Peoples R China
关键词
multi-sensor fusion; point clouds processing; 3D object detection; autonomous driving;
D O I
10.3390/rs15061580
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Today, multi-sensor fusion detection frameworks in autonomous driving, especially sequence-based data-level fusion frameworks, face high latency and coupling issues and generally perform worse than LiDAR-only detectors. On this basis, we propose PMPF, point-cloud multiple-pixel fusion, for 3D object detection. PMPF projects the point cloud data onto the image plane, where the region pixels are processed to correspond with the points and decorated to the point cloud data, such that the fused point cloud data can be applied to LiDAR-only detectors with autoencoders. PMPF is a plug-and-play, decoupled multi-sensor fusion detection framework with low latency. Extensive experiments on the KITTI 3D object detection benchmark show that PMPF vastly improves upon most of the LiDAR-only detectors, e.g., PointPillars, SECOND, CIA-SSD, SE-SSD four state-of-the-art one-stage detectors, and PointRCNN, PV-RCNN, Part-A(2) three two-stage detectors.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Survey on Image and Point-Cloud Fusion-Based Object Detection in Autonomous Vehicles
    Peng, Ying
    Qin, Yechen
    Tang, Xiaolin
    Zhang, Zhiqiang
    Deng, Lei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 22772 - 22789
  • [2] RGB Pixel-Block Point-cloud Fusion for Object Detection
    Foster, Timothy
    Dahal, Ajaya
    Ball, John E.
    AUTONOMOUS SYSTEMS: SENSORS, PROCESSING, AND SECURITY FOR VEHICLES AND INFRASTRUCTURE 2021, 2021, 11748
  • [3] Research on 3D Point Cloud Object Detection Algorithm for Autonomous Driving
    Jiang, Haiyang
    Lu, Yuanyao
    Chen, Shengnan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [4] PLOT: a 3D point cloud object detection network for autonomous driving
    Zhang, Yihuan
    Wang, Liang
    Dai, Yifan
    ROBOTICA, 2023, 41 (05) : 1483 - 1499
  • [5] Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy
    Fernandes, Duarte
    Silva, Antonio
    Nevoa, Rafael
    Simoes, Claudia
    Gonzalez, Dibet
    Guevara, Miguel
    Novais, Paulo
    Monteiro, Joao
    Melo-Pinto, Pedro
    INFORMATION FUSION, 2021, 68 : 161 - 191
  • [6] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251
  • [7] Adversarial point cloud perturbations against 3D object detection in autonomous driving systems
    Wang, Xupeng
    Cai, Mumuxin
    Sohel, Ferdous
    Sang, Nan
    Chang, Zhengwei
    NEUROCOMPUTING, 2021, 466 : 27 - 36
  • [8] 3D object detection based on point cloud in automatic driving scene
    Hai-Sheng Li
    Yan-Ling Lu
    Multimedia Tools and Applications, 2024, 83 : 13029 - 13044
  • [9] 3D object detection based on point cloud in automatic driving scene
    Li, Hai-Sheng
    Lu, Yan-Ling
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 13029 - 13044
  • [10] Improving Radar-Camera Fusion-based 3D Object Detection for Autonomous Vehicles
    Kurniawan, Irfan Tito
    Trilaksono, Bambang Riyanto
    2022 12TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET 2022), 2022, : 42 - 47