Dynamically constraining the length of the Milky way bar

被引:23
|
作者
Lucey, Madeline [1 ]
Pearson, Sarah [2 ]
Hunt, Jason A. S. [3 ]
Hawkins, Keith [1 ]
Ness, Melissa [3 ,4 ,5 ,6 ]
Petersen, Michael S. [5 ,6 ]
Price-Whelan, Adrian M. [3 ]
Weinberg, Martin D. [7 ]
机构
[1] Univ Texasat Austin, Dept Astron, 2515 Speedway Blvd, Austin, TX 78712 USA
[2] NYU, Ctr Cosmol & Particle Phys, Dept Phys, 726 Broadway, New York, NY 10003 USA
[3] Flatiron Inst, Ctr Computat Astrophys, 1625 th Ave, New York, NY 10010 USA
[4] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA
[5] CNRS, F-75014 Paris, France
[6] Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France
[7] Univ Massachusetts Amherst, Dept Astron, 710 N Pleasant St, Amherst, MA 01003 USA
基金
美国能源部; 美国国家科学基金会;
关键词
Galaxy: bulge; Galaxy: evolution; Galaxy: kinematics and dynamics; Galaxy: structure; OUTER LINDBLAD RESONANCE; SPLIT RED CLUMP; GALACTIC BULGE; PATTERN SPEED; STELLAR POPULATIONS; PALOMAR; LONG BAR; KINEMATICS; GALAXY; EVOLUTION;
D O I
10.1093/mnras/stad406
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named R-Freq, based on the maximal extent of trapped bar orbits. We find the R-Freq measured from orbits is consistent with the R-Freq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model's or the Milky Way's bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured R-Freq. When we apply this method to approximate to 210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of approximate to 3.5 kpc. We find the Milky Way's trapped bar orbits extend out to only approximate to 3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential.
引用
收藏
页码:4779 / 4792
页数:14
相关论文
共 50 条
  • [1] 'MILKY WAY BAR'
    MANHIRE, B
    LANDFALL, 1989, 43 (02): : 179 - 179
  • [2] Constraining the formation of the Milky Way: Ages
    Chiappini, C.
    Minchev, I.
    Martig, M.
    40TH LIEGE INTERNATIONAL ASTROPHYSICAL COLLOQUIUM AGEING LOW MASS STARS: FROM RED GIANTS TO WHITE DWARFS, 2013, 43
  • [3] Milky Way bar found
    不详
    ASTRONOMY & GEOPHYSICS, 2005, 46 (05) : 6 - 6
  • [4] THE MILKY-WAY BAR
    TYSON, NDG
    NATURAL HISTORY, 1995, 104 (08) : 16 - 18
  • [5] Constraining the Milky Way mass with hypervelocity stars
    Fragione, G.
    Loeb, A.
    NEW ASTRONOMY, 2017, 55 : 32 - 38
  • [6] MILKY WAY Mind the Galactic bar
    Efthymiopoulos, Christos
    NATURE ASTRONOMY, 2017, 1 (09): : 571 - 572
  • [7] The chemistry of stars in the bar of the Milky Way
    Wegg, C.
    Rojas-Arriagada, A.
    Schultheis, M.
    Gerhard, O.
    ASTRONOMY & ASTROPHYSICS, 2019, 632
  • [8] A new model for the Milky Way bar
    Wang, Yougang
    Zhao, Hongsheng
    Mao, Shude
    Rich, R. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (02) : 1429 - 1440
  • [9] 'MILKY WAY BAR' - MANHIRE,B
    GADD, B
    WORLD LITERATURE TODAY, 1992, 66 (04) : 785 - 785
  • [10] 'MILKY WAY BAR' - MANHIRE,B
    KENNEDY, D
    TLS-THE TIMES LITERARY SUPPLEMENT, 1992, (4636): : 19 - 19