共 50 条
A multiple comorbidities mouse lung infection model in ApoE-deficient mice
被引:3
|作者:
Bartlett, Benjamin
[1
,2
]
Lee, Silvia
[1
,3
]
Ludewick, Herbert P.
[1
,4
]
Siew, Teck
[5
,6
]
Verma, Shipra
[5
,7
]
Waterer, Grant
[2
,6
]
Corrales-Medina, Vicente F.
[8
,9
]
Dwivedi, Girish
[1
,2
,10
]
机构:
[1] Harry Perkins Inst Med Res, Dept Adv Clin & Translat Cardiovasc Imaging, Perth, WA 6150, Australia
[2] Univ Western Australia, Sch Med, Perth, WA 6009, Australia
[3] Pathwest Lab Med, Dept Microbiol, Perth, WA 6000, Australia
[4] Harry Perkins Inst Med Res, Heart & Lung Res Inst, Perth, WA 6150, Australia
[5] Fiona Stanley Hosp, Dept Nucl Med, Perth, WA 6150, Australia
[6] Royal Perth Hosp, Perth, WA 6000, Australia
[7] Fiona Stanley Hosp, Dept Geriatr Med, Perth, WA 6150, Australia
[8] Univ Ottawa, Dept Med, Ottawa, ON K1N 6N5, Canada
[9] Ottawa Hosp Res Inst, Clin Epidemiol Program, Ottawa, ON K1H 8L6, Canada
[10] Fiona Stanley Hosp, Dept Cardiol, Perth, WA 6150, Australia
关键词:
animal model;
ApoE-deficient mice;
atherosclerosis;
cardiovascular disease;
pneumonia;
COMMUNITY-ACQUIRED PNEUMONIA;
APOLIPOPROTEIN-E;
CARDIAC COMPLICATIONS;
INVASIVE DISEASE;
INFLAMMATION;
RISK;
PROLIFERATION;
ASSOCIATION;
GENE;
IL-6;
D O I:
10.3892/br.2023.1603
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre-existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE(-/-) mice were fed a high-fat diet prior to administering intranasally 10(5) colony forming units of TIGR4 or phosphate-buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real-time PCR. TIGR4-inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4-inoculated mice up to 28 days PI. The majority (90%) TIGR4-inoculated mice developed pneumococcal-specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4-inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)-1 beta and IL-6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
引用
收藏
页数:13
相关论文