Can unsupervised machine learning boost the on-site analysis of in situ synchrotron diffraction data?

被引:2
|
作者
Strohmann, T. [1 ]
Barriobero-Vila, P. [1 ,2 ]
Gussone, J. [1 ]
Melching, D. [1 ]
Stark, A. [3 ]
Schell, N. [3 ]
Requena, G. [1 ,4 ]
机构
[1] German Aerosp Ctr DLR, Inst Mat Res, Cologne, Germany
[2] Tech Univ Catalonia UPC, Dept Mat Sci & Engn, Barcelona, Spain
[3] Helmholtz Zentrum Hereon, Inst Mat Phys, Geesthacht, Germany
[4] Rhein Westfal TH Aachen, Aachen, Germany
关键词
Unsupervised machine learning; Synchrotron diffraction; Ti-6Al-4V; Additive manufacturing; TI-6AL-4V;
D O I
10.1016/j.scriptamat.2022.115238
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We explore the use of unsupervised machine learning to analyze in situ diffraction data of an additively man-ufactured Ti-6Al-4V alloy. The model is trained on a dataset consisting of four thermal cycles. The alpha/alpha'-beta phase transformation results in a steep gradient of the reconstruction error, whose derivative is applicable to detect periods of fast phase transformation. Moreover, the latent space features of the autoencoder correlate well with the volume fractions of alpha/alpha' and beta. The methodology can be implemented to monitor phase transformation kinetics on-site during experiments at synchrotrons without the need of continuous training or manual data labeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Unsupervised machine learning applied to scanning precession electron diffraction data
    Martineau, Ben H.
    Johnstone, Duncan N.
    van Helvoort, Antonius T. J.
    Midgley, Paul A.
    Eggeman, Alexander S.
    ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2019, 5
  • [2] Adversarial Examples Can Be Effective Data Augmentation for Unsupervised Machine Learning
    Hsu, Chia-Yi
    Chen, Pin-Yu
    Lu, Songtao
    Liu, Sijia
    Yu, Chia-Mu
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6926 - 6934
  • [3] Can unsupervised machine learning help us understand the data collected in the ocean?
    Chen, Wesley
    Neilsen, Tracianne B.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [4] IMAGE-PLATE SYSTEM WITH ON-SITE READING PROCESS FOR HIGHLY EFFICIENT DATA COLLECTION IN SYNCHROTRON POWDER DIFFRACTION
    Fuess, H.
    Ehrenberg, H.
    Knapp, M.
    Baehtz, C.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C73 - C73
  • [5] Ensemble Machine-Learning-Based Analysis for In Situ Electron Diffraction
    Ge, Mengshu
    Liu, Xiaozhi
    Zhao, Zhicheng
    Su, Fei
    Gu, Lin
    Su, Dong
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (04)
  • [6] Machine learning based photovoltaic energy prediction scheme by augmentation of on-site IoT data
    Park, Jaeeun
    Kim, Jangkyum
    Lee, Sanghyun
    Choi, Jun Kyun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 134 : 1 - 12
  • [7] Feature extraction and spatial imaging of synchrotron radiation X-ray diffraction patterns using unsupervised machine learning
    Kutsukake, Kentaro
    Kamioka, Takefumi
    Matsui, Kota
    Takeuchi, Ichiro
    Segi, Takashi
    Sasaki, Takuo
    Fujikawa, Seiji
    Takahasi, Masamitu
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2024, 4 (01):
  • [8] Unsupervised boundary analysis of potential field data: A machine learning method
    Cutaneo, Carmine
    Vitale, Andrea
    Fedi, Maurizio
    GEOPHYSICS, 2023, 88 (03) : G57 - G65
  • [9] Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry
    Verbeeck, Nico
    Caprioli, Richard M.
    van de Plas, Raf
    MASS SPECTROMETRY REVIEWS, 2020, 39 (03) : 245 - 291
  • [10] Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet Transmission Spectra
    Matchev, Konstantin T.
    Matcheva, Katia
    Roman, Alexander
    PLANETARY SCIENCE JOURNAL, 2022, 3 (09):