NONLINEAR FRACTIONAL SCHRO spacing diaeresis DINGER EQUATIONS COUPLED BY POWER-TYPE NONLINEARITIES

被引:1
|
作者
Colorado, Eduardo [1 ]
Ortega, Alejandro [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Leganes 28911, Madrid, Spain
关键词
GROUND-STATES; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; STANDING WAVES; SOLITARY WAVES; BOUND-STATES; SYSTEMS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.57262/ade028-0102-113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the following class of systems of coupled nonlinear fractional Schrodinger equations, {(-delta)(s)u(1 )+lambda(1)u(1) = mu(1)|u(1)|(2p-2)u(1) + beta|u(2)|(p)|u(1)|(p-2)u(1) in R-N, (-delta)(s)u(2 )+lambda(2)u(2) = mu(2)|u(2)|(2p-2)u(2) + beta|u(1)|(p)|u(2)|(p-2)u(2) in R-N, where u(1), u(2) is an element of W-s,W-2(R-N), with N = 1, 2, 3; lambda(j), mu(j) > 0, j = 1, 2, beta is an element of R, p >= 2 and p - 1/2p N < s < 1. Precisely, we prove the existence of positive radial bound and ground state solutions provided the parameters p, beta, lambda(j), mu(j), (j = 1, 2) satisfy appropriate conditions. We also study the previous system with m equations, (-delta)(s)u(j) + lambda(j)u(j) = mu(j)|u(j)|(2p-2)u(j) + sigma(m)(k=1k&NOTEQUexpressionL;j) beta(jk)|u(k)|(p)|u(j)|(p-2)u(j), uj is an element of W-s,W-2(R-N) where j = 1, ... , m >= 3, lambda(j), mu(j )> 0, the coupling parameters beta(jk) = beta(kj )is an element of R for j, k = 1, ... , m, j &NOTEQUexpressionL; k. For this system, we prove sim-ilar results as for m = 2, depending on the values of the parameters p, beta(jk), lambda(j), mu(j), (for j, k = 1,.. ., m, j &NOTEQUexpressionL; k).
引用
收藏
页码:113 / 142
页数:30
相关论文
共 50 条
  • [1] Existence of stable standing waves for the nonlinear Schro spacing diaeresis dinger equation with mixed power-type and Choquard-type nonlinearities
    Shi, Chao
    AIMS MATHEMATICS, 2022, 7 (03): : 3802 - 3825
  • [2] ON NONLINEAR SCHRO spacing diaeresis DINGER EQUATIONS WITH ATTRACTIVE INVERSE-POWER POTENTIALS
    Van Duong Dinh
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 489 - 523
  • [3] FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A CLASS OF TWO-COUPLED NONLINEAR FRACTIONAL SCHRO spacing diaeresis DINGER EQUATIONS
    Alouini, Brahim
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 559 - 581
  • [4] Prediction of symmetric and asymmetric solitons and model parameters for nonlinear Schro<spacing diaeresis>dinger equations with competing nonlinearities
    Jiang, Jun-Hang
    Si, Zhi-Zeng
    Kudryashov, Nikolay A.
    Dai, Chao-Qing
    Liu, Wei
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [5] GENERALIZED SOLUTIONS FOR FRACTIONAL SCHRO<spacing diaeresis>DINGER EQUATION
    Benmerrous, A.
    Chadli, L. S.
    Moujahid, A.
    Elomari, M.
    Melliani, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (04): : 1361 - 1373
  • [6] Vector multipole solitons of fractional-order coupled saturable nonlinear Schro<spacing diaeresis>dinger equation
    Xu, Tong-Zhen
    Liu, Jin-Hao
    Wang, Yue-Yue
    Dai, Chao-Qing
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [7] The Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger equation in Sobolev spaces
    Mun, HakBom
    An, JinMyong
    Kim, JinMyong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (03) : 278 - 293
  • [8] Prediction of multipole vector solitons and model parameters for coupled saturable nonlinear Schro<spacing diaeresis>dinger equations
    Jiang, Jun-Hang
    Si, Zhi-Zeng
    Dai, Chao-Qing
    Wu, Bin
    CHAOS SOLITONS & FRACTALS, 2024, 180
  • [9] A KAM THEOREM FOR HIGHER DIMENSIONAL REVERSIBLE NONLINEAR SCHRO spacing diaeresis DINGER EQUATIONS
    Lou, Zhaowei
    Sun, Yingnan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (69) : 1 - 25
  • [10] NORMALIZED SOLUTIONS TO FRACTIONAL SCHRO<spacing diaeresis>DINGER EQUATION WITH POTENTIALS
    Liu, Mei-qi
    Zou, Wenming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023,