Residual-based a posteriori error analysis of an ultra-weak discontinuous Galerkin method for nonlinear second-order initial-value problems

被引:0
|
作者
Baccouch, Mahboub [1 ]
机构
[1] Univ Nebraska Omaha, Dept Math & Stat Sci, Omaha, NE 68182 USA
关键词
Second-order initial-value problems; Ultra-weak discontinuous Galerkin method; Superconvergence; A posteriori error estimation; Implicit residual-based error estimator; FINITE-ELEMENT-METHOD; SUPERCONVERGENCE;
D O I
10.1007/s11075-024-01799-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze implicit residual-based a posteriori error estimates for the ultra-weak discontinuous Galerkin (UWDG) method for nonlinear second-order initial-value problems for ordinary differential equations of the form u ''=f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u''=f(x,u)$$\end{document}. We prove that the UWDG error on each element can be split into two parts. The significant part is proportional to the (p+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p+1)$$\end{document}-degree polynomial (1-xi)2Pp-12,0(xi),xi is an element of[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\xi )<^>2P_{p-1}<^>{2,0}(\xi ),\ \xi \in [-1,1]$$\end{document}, where Pp-12,0(xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{p-1}<^>{2,0}(\xi )$$\end{document} is the (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-degree Jacobi polynomial, when piecewise polynomials of degree p >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document} are used. The second part of the error converges with order p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document} in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm. These results allow us to construct a posteriori UWDG error estimates. The proposed residual-based a posteriori error estimators of this paper are reliable and efficient and are obtained by solving a local problem with no side conditions on each element. Furthermore, we prove that, for smooth solutions, these a posteriori error estimates converge to the exact errors in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm under mesh refinement. The order of convergence is proved to be p+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. Finally, we prove that the global effectivity index converges to unity at O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(h)$$\end{document} rate. As an application, we introduce a local adaptive mesh refinement (AMR) procedure that leverages both our local and global a posteriori error estimates. Our proofs hold for general regular meshes and for Pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<^>p$$\end{document} polynomials with p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}. Several numerical experiments are provided to validate the theoretical results.
引用
收藏
页数:32
相关论文
共 50 条