Shorter quantum circuits via single-qubit gate approximation

被引:0
|
作者
Kliuchnikov, Vadym [1 ,2 ]
Lauter, Kristin [3 ]
Minko, Romy [4 ,5 ]
Paetznick, Adam [1 ]
Petit, Christophe [6 ,7 ]
机构
[1] Microsoft Quantum, Redmond, WA 98073 USA
[2] Microsoft Quantum, Toronto, ON, Canada
[3] Facebook AI Res, Seattle, WA USA
[4] Univ Oxford, Oxford, England
[5] Univ Bristol, Heilbronn Inst Math Res, Bristol, England
[6] Univ Birmingham, Birmingham, England
[7] Univ Libre Brussels, Brussels, Belgium
来源
QUANTUM | 2023年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
CLIFFORD;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a novel procedure for approximating general single-qubit unitaries from a finite universal gate set by reducing the problem to a novel magnitude approximation problem, achieving an immediate improvement in sequence length by a factor of 7/9. Extending the work of [Has17; Cam17], we show that taking probabilistic mixtures of channels to solve fallback [BRS15b] and magnitude approximation problems saves factor of two in approximation costs. In root particular, over the Clifford+ T gate set we achieve an average non-Clifford gate count of 0.23 log2(1/epsilon) + 2.13 and T-count 0.56 log2(1/epsilon) + 5.3 with mixed fallback approximations for diamond norm accuracy epsilon.This paper provides a holistic overview of gate approximation, in addition to these new insights. We give an end-to-end procedure for gate approxi-mation for general gate sets related to some quaternion algebras, providing pedagogical examples using common fault-tolerant gate sets (V, Clifford+T root and Clifford+root T). We also provide detailed numerical results for Clifford+T and Clifford+ T gate sets. In an effort to keep the paper self-contained, we in-clude an overview of the relevant algorithms for integer point enumeration and relative norm equation solving. We provide a number of further applications of the magnitude approximation problems, as well as improved algorithms for exact synthesis, in the Appendices.
引用
收藏
页数:87
相关论文
共 50 条
  • [1] Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits
    Kliuchnikov, Vadym
    Maslov, Dmitri
    Mosca, Michele
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (01) : 161 - 172
  • [2] Mitigation of microwave crosstalk with parameterized single-qubit gate in superconducting quantum circuits
    Yang, Z. H.
    Wang, Ruixia
    Wang, Z. T.
    Zhao, Peng
    Huang, Kaixuan
    Xu, Kai
    Tian, Ye
    Yu, H. F.
    Zhao, S. P.
    APPLIED PHYSICS LETTERS, 2024, 124 (21)
  • [3] Resource-Optimal Single-Qubit Quantum Circuits
    Bocharov, Alex
    Svore, Krysta M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [4] Quantum circuits for single-qubit measurements corresponding to platonic solids
    Decker, T
    Janzing, D
    Beth, T
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (03) : 353 - 377
  • [5] Classical ensembles of single-qubit quantum variational circuits for classification
    McFarthing, Shane
    Pillay, Anban
    Sinayskiy, Ilya
    Petruccione, Francesco
    Quantum Machine Intelligence, 2024, 6 (02)
  • [6] Learning quantum phases via single-qubit disentanglement
    An, Zheng
    Cao, Chenfeng
    Xu, Cheng-Qian
    Zhou, D. L.
    QUANTUM, 2024, 8
  • [7] Sequential optimal selections of single-qubit gates in parameterized quantum circuits
    Wada, Kaito
    Raymond, Rudy
    Sato, Yuki
    Watanabe, Hiroshi C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [8] Optimizing Parameterized Quantum Circuits With Free-Axis Single-Qubit Gates
    Watanabe H.C.
    Raymond R.
    Ohnishi Y.-Y.
    Kaminishi E.
    Sugawara M.
    IEEE Transactions on Quantum Engineering, 2023, 4
  • [9] Quantum thermometry by single-qubit dephasing
    Sholeh Razavian
    Claudia Benedetti
    Matteo Bina
    Yahya Akbari-Kourbolagh
    Matteo G. A. Paris
    The European Physical Journal Plus, 134
  • [10] Single-qubit optical quantum fingerprinting
    Horn, RT
    Babichev, SA
    Marzlin, KP
    Lvovsky, AI
    Sanders, BC
    PHYSICAL REVIEW LETTERS, 2005, 95 (15)