Enhanced deep transfer learning with multi-feature fusion for lung disease detection

被引:0
|
作者
Vidyasri, S. [1 ]
Saravanan, S. [1 ]
机构
[1] Annamalai Univ, Fac Sci, Dept Comp & Informat Sci, Annamalainagar, Tamil Nadu, India
关键词
Lung disease; Computer aided diagnosis; Multi-feature fusion; Deep transfer learning; Chest X-ray images; Dung beetle optimizer;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early detection of lung disease is important for timely intervention and treatment, enhancing patient outcomes and decreasing healthcare cost. Chest X-rays are a widely employed imaging modality to examine the structures within the chest, including the lungs and surrounding tissues. Lung disease detection using chest X-rays is a critical application of medical imaging and artificial intelligence (AI) in healthcare. Recently, lung disease detection using deep learning (DL) becomes a significant research area, which has the potential to improve early detection rate and decrease mortality rate. Therefore, this article introduces a Multi-Feature Fusion Based Deep Transfer Learning with Enhanced Dung Beetle Optimization Algorithm (MFFTL-EDBOA) for lung disease detection and classification. The MFFTL-EDBOA technique aims to recognize the existence of lung diseases on CXR images. At the primary stage, the MFFTL-EDBOA technique uses adaptive filtering (AF) approach to remove the noise level. Besides, a multi-feature fusion-based feature extraction approach is developed based on three DL models namely DenseNet, EfficientNet, and MobileNet. For accurate lung disease detection and classification purposes, the convolutional fuzzy neural network (CFNN) approach is utilized. The hyperparameter tuning of the CFNN model occurs using the EDBOA. To illustrate the enhanced lung disease detection results of the MFFTL-EDBOA technique, a sequence of experiments is carried out on benchmark medical dataset from Kaggle repository. The experimental values highlighted the greater result of the MFFTL-EDBOA system over other recent approaches with maximum accuracy of 98.99%.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Enhanced deep transfer learning with multi-feature fusion for lung disease detection
    Vidyasri, S.
    Saravanan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 56321 - 56345
  • [2] A Multi-Feature Fusion Using Deep Transfer Learning for Earthquake Building Damage Detection
    Abdi, Ghasem
    Jabari, Shabnam
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (02) : 337 - 352
  • [3] HSRRS Classification Method Based on Deep Transfer Learning And Multi-Feature Fusion
    Wang, Ziteng
    Li, Zhaojie
    Wang, Yu
    Li, Wenmei
    Yang, Jie
    Ohtsuki, Tomoaki
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [4] A Lung Image Deep Learning Detection Model Based on Cross Residual Attention and Multi-feature Fusion
    Gou, Haosong
    Tang, Fanjie Zhao Mingwei
    Zhang, Gaoyi
    Zhao, Mingfeng
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (03):
  • [5] Deep learning model with multi-feature fusion and label association for suicide detection
    Li, Zepeng
    Cheng, Wenchuan
    Zhou, Jiawei
    An, Zhengyi
    Hu, Bin
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2193 - 2203
  • [6] Deep learning model with multi-feature fusion and label association for suicide detection
    Zepeng Li
    Wenchuan Cheng
    Jiawei Zhou
    Zhengyi An
    Bin Hu
    Multimedia Systems, 2023, 29 : 2193 - 2203
  • [7] Multi-feature fusion deep networks
    Ma, Gang
    Yang, Xi
    Zhang, Bo
    Shi, Zhongzhi
    NEUROCOMPUTING, 2016, 218 : 164 - 171
  • [8] Multi-feature Fusion Deep Network for Skin Disease Diagnosis
    Gairola A.K.
    Kumar V.
    Sahoo A.K.
    Diwakar M.
    Singh P.
    Garg D.
    Multimedia Tools and Applications, 2025, 84 (1) : 419 - 444
  • [9] A Multi-feature Fusion-based Deep Learning for Insulator Image Identification and Fault Detection
    Huang, Xinlei
    Shang, Erbo
    Xue, Jiande
    Ding, Hongwen
    Li, Panpan
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1957 - 1960
  • [10] Research on Railway Dispatcher Fatigue Detection Method Based on Deep Learning with Multi-Feature Fusion
    Chen, Liang
    Zheng, Wei
    ELECTRONICS, 2023, 12 (10)