An exact computation for mixed multifractal dimensions of sets and measures

被引:0
|
作者
Arfaoui, Sabrine [1 ,2 ]
Ben Mabrouk, Anouar [1 ,2 ,3 ,4 ]
机构
[1] Univ Monastir, Fac Sci, Dept Math, LR18ES15,Lab Algebra Number Theory & Nonlinear Ana, Ave Environm, Monastir 5000, Tunisia
[2] Univ Jendouba, Higher Inst Comp Sci Elkef, Dept Comp Sci, Rue Saleh Ayech, Kef 7100, Tunisia
[3] Univ Kairouan, Higher Inst Appl Math & Comp Sci, Dept Math, St Assad Ibn Alfourat, Kairouan 3100, Tunisia
[4] Univ Tabuk, Fac Sci, Dept Math, King Faisal Rd, Tabuk 71491, Saudi Arabia
关键词
Hausdorff and packing measures; Hausdorff and packing dimensions; Mixed cases; Multifractal exact dimension; Moran sets and measures; EQUIVALENCE; HAUSDORFF;
D O I
10.2298/FIL2323761A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, we are concerned with the estimation of some mixed variants of multifractal dimensions for a special class of measures characterized by a weak Ahlfors assumption applying mixed multifractal generalizations of Hausdorff and packing measures. Exact computation of such dimensions is shown to be valid for a class of Moran-type measures in some special cases.
引用
收藏
页码:7761 / 7769
页数:9
相关论文
共 50 条
  • [1] On the multifractal measures: proportionality and dimensions of Moran sets
    Bilel Selmi
    Zhihui Yuan
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3949 - 3969
  • [2] On the multifractal measures: proportionality and dimensions of Moran sets
    Selmi, Bilel
    Yuan, Zhihui
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3949 - 3969
  • [3] On the multifractal measures and dimensions of image measures on a class of Moran sets
    Attia, Najmeddine
    Selmi, Bilel
    [J]. Chaos, Solitons and Fractals, 2023, 174
  • [4] Multifractal Dimensions for Projections of Measures
    Selmi, Bilel
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [5] Multifractal dimensions of product measures
    Olsen, L
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 709 - 734
  • [6] MEASURE OF RELATIVE MULTIFRACTAL EXACT DIMENSIONS
    Bilel, Selmi
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (10): : 629 - 643
  • [7] Typical multifractal box dimensions of measures
    Olsen, L.
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 211 (03) : 245 - 266
  • [8] Fractal and Multifractal Dimensions of Prevalent Measures
    Olsen, L.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 661 - 690
  • [9] The multifractal box dimensions of typical measures
    Bayart, Frederic
    [J]. FUNDAMENTA MATHEMATICAE, 2012, 219 (02) : 145 - 162
  • [10] On the Equivalence of Multifractal Measures on Moran Sets
    Ben Mabrouk, Anouar
    Selmi, Bilel
    [J]. FILOMAT, 2022, 36 (10) : 3479 - 3490