Comparative study of the short-range structure of α-V2O5, α-TeO2 and xV2O5-(100-x)TeO2 glasses using X-ray diffraction, Rietveld analysis and reverse Monte Carlo simulations

被引:0
|
作者
Kaur, Navjot [1 ]
Khanna, Atul [1 ]
Kaur, Puneet [1 ]
Singh, M. N. [2 ]
Sinha, A. K. [3 ]
机构
[1] Guru Nanak Dev Univ, Glass Phys & Sensors Lab, Dept Phys, Amritsar, Punjab, India
[2] Raja Ramanna Ctr Adv Technol, Hard Xray Applicat Lab, SUS, Indore, India
[3] Univ Petr & Energy Studies, Dept Phys, Sch Engn, Dehra Dun, Uttarakhand, India
关键词
vanadium tellurite glasses; V2O5 and TeO2; X-ray diffraction and structure; reverse Monte Carlo simulations; Rietveld analysis; TELLURITE GLASSES; ANTI-GLASS; NEUTRON; CONDUCTIVITY; CRYSTAL; PHASE; ORDER;
D O I
10.1107/S2052520622011581
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vanadium-tellurite glasses, tetragonal TeO2 and orthorhombic V2O5 crystalline samples were characterized for their atomic structure properties by synchrotron X-ray diffraction, pair distribution function analysis, reverse Monte Carlo simulations (RMC) and Rietveld analysis. The pair correlation function, G(r), of V2O5 shows the first peak at 1.61 angstrom. G(r) of TeO2 shows three peaks at 1.57, 2.13 and 2.88 angstrom due to Te-O linkages of three different lengths, whereas the Te-Te atomic pair correlation shows a peak at 3.85 angstrom. The average coordination number of V with O in crystalline V2O5 is 4.39 while that of Te with O in crystalline TeO2 is 3.71. G(r) of the vanadium tellurite glass shows the first peak at 1.90 A degrees due to overlapping Te-O and V-O atomic pair correlations. The RMC analysis on diffraction data of glasses found that the V-O coordination number is in the range 5.27-5.59 and the Te-O coordination number is 5.39-5.67. However, it is found that these coordination numbers cannot be clearly defined due to short-range disorder.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [1] Ultrasonic studies of (TeO2)(1-x)-(V2O5)(x) glasses
    Sidkey, MA
    ElMallawany, R
    Nakhla, RI
    AbdElMoneim, A
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1997, 215 (01) : 75 - 82
  • [2] Structure of xMoO3-(100-x)TeO2 glasses by neutron diffraction and Reverse Monte Carlo modeling
    Khanna, Atul
    Kauri, Amandeep
    Fabian, Margit
    Krishna, P. S. R.
    Shinde, A. B.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
  • [3] Dc conductivity of V2O5 MnO TeO2 glasses
    Sega, K
    Kuroda, Y
    Sakata, H
    JOURNAL OF MATERIALS SCIENCE, 1998, 33 (05) : 1303 - 1308
  • [4] Atomic ordering in xGa2O3•(100-x)TeO2 glasses (x=10, 17.5, 25) by X-ray diffraction
    Petkov, V
    Stachs, O
    Gerber, T
    Ilieva, D
    Dimitriev, Y
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 248 (01) : 65 - 74
  • [5] Small polaron transport in V2O5–NiO–TeO2 glasses
    M. M. El-Desoky
    Journal of Materials Science: Materials in Electronics, 2003, 14 : 215 - 221
  • [6] X-ray diffraction study of the short-range structure of LiCl-Li2O-TeO2 glasses
    Iwadate, Y
    Kenmotsu, H
    Hattori, T
    Nishiyama, S
    Fukushima, K
    Umesaki, N
    Nakazawa, T
    Noda, K
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 305 (1-2) : 130 - 135
  • [7] X-ray diffraction study on the short-range structure of K2O-TeO2 glasses and melts
    Iwadate, Y
    Mori, T
    Hattori, T
    Nishiyama, S
    Fukushima, K
    Umesaki, N
    Akagi, R
    Handa, K
    Ohtori, N
    Nakazawa, T
    Iwamoto, A
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 311 (02) : 153 - 158
  • [8] Spectroscopic studies of V2O5–Bi2O3–TeO2 glasses
    A. S. Rahim
    A. K. Arof
    Optical and Quantum Electronics, 2016, 48
  • [9] Electrical Conductivity of V2O5–TeO2–Sb Glasses at Low Temperatures
    Dariush Souri
    Parvin Azizpour
    Hamideh Zaliani
    Journal of Electronic Materials, 2014, 43 : 3672 - 3680
  • [10] D.c. conductivity of V2O5–MnO–TeO2 glasses
    K Sega
    Y Kuroda
    H Sakata
    Journal of Materials Science, 1998, 33 : 1303 - 1308