Thermokarst lakes group accelerates permafrost degradation in the Qinghai-Tibet Plateau, China: A modeling study

被引:0
|
作者
Ke, Xianmin [1 ,2 ]
Wang, Wei [1 ,2 ,6 ]
Huang, Wenfeng [1 ,2 ]
Niu, Fujun [3 ,4 ,5 ]
Gao, Zeyong [5 ]
机构
[1] Changan Univ, Sch Water & Environm, Xian 710054, Shaanxi, Peoples R China
[2] Changan Univ, Key Lab Subsurface Hydrol & Ecol Effect Arid Reg, Minist Educ, Xian 710054, Shaanxi, Peoples R China
[3] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou, Peoples R China
[4] South China Univ Technol, South China Inst Geotech Engn, Sch Civil Engn & Transportat, Guangzhou, Peoples R China
[5] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
[6] Changan Univ, Sch Water & Environm, 126 Yanta Rd, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermokarst lakes group; Permafrost degradation; Groundwater flow; Through-talik; Hydrothermal coupled model; GROUNDWATER-FLOW; BEILUHE BASIN; CLIMATE; WATER; THAW; TRANSPORT; SIMULATIONS; MOISTURE; BENEATH; ALASKA;
D O I
10.1016/j.jhydrol.2023.130072
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Thermokarst lakes in the Qinghai-Tibet Plateau (QTP) are increasing in number and lake surface area, intensifying the lake-permafrost interaction and making it more complex, thus affecting the hydrological and ecological environment. Although the impact of the individual lake on permafrost has been studied, the effects of lakes group on permafrost and regional hydrological processes remain unexplored. Hence, in this study, modified SUTRA models considering thermal conduction and convection processes were established for five scenarios, including a current environment and four thought experiments, to determine whether and how thermokarst lakes group accelerates permafrost degradation. The models could effectively simulate the variations in the ground temperature with time and depth, with the highest RMSE and lowest R2 being 1.443 degrees C and 0.706, respectively. Thermal conduction and convection played a dominant role before and after the formation of through-taliks below the thermokarst lakes, respectively. Through-taliks strengthened the hydraulic connection between supra-permafrost water, sub-permafrost water, and lakes, and changed the groundwater circulation pattern. An increase in the number of thermokarst lakes led to the formation of more through-taliks and improved the heat transfer efficiency, accelerating permafrost degradation. Thermal erosion of the permafrost base was more severe in the presence of a recharge source and pathway via a talik. The results highlight the importance of thermal convection and groundwater circulation in permafrost degradation. The findings can help understand the interaction mechanism between permafrost and thermokarst lakes and the variation in environmental and ecohydrological processes in cold regions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Interaction of permafrost degradation and thermokarst lakes in the Qinghai-Tibet Plateau
    Xu, Zhida
    Jiang, Liming
    Guo, Rui
    Huang, Ronggang
    Zhou, Zhiwei
    Niu, Fujun
    Jiao, Zhiping
    [J]. GEOMORPHOLOGY, 2023, 425
  • [2] Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau
    Niu, Fujun
    Lin, Zhanju
    Liu, Hua
    Lu, Jiahao
    [J]. GEOMORPHOLOGY, 2011, 132 (3-4) : 222 - 233
  • [3] Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China
    Gao, Zeyong
    Niu, Fujun
    Lin, Zhanju
    [J]. HYDROLOGICAL PROCESSES, 2020, 34 (26) : 5659 - 5673
  • [4] Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau
    Ren, Ze
    Zhang, Cheng
    Li, Xia
    Luo, Wei
    [J]. ENVIRONMENTAL POLLUTION, 2024, 344
  • [5] Modeled response of talik development under thermokarst lakes to permafrost thickness on the Qinghai-Tibet Plateau
    Feng Ling
    QingBai Wu
    FuJun Niu
    TingJun Zhang
    [J]. Sciences in Cold and Arid Regions, 2014, 6 (06) : 521 - 530
  • [6] Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes
    Yang, Yuzhong
    Wu, Qingbai
    Yun, Hanbo
    Jin, Huijun
    Zhang, Zhongqiong
    [J]. GLOBAL AND PLANETARY CHANGE, 2016, 140 : 1 - 8
  • [7] Effects of a thaw slump on active layer in permafrost regions with the comparison of effects of thermokarst lakes on the Qinghai-Tibet Plateau, China
    Wang, Yibo
    Sun, Zhe
    Sun, Yan
    [J]. GEODERMA, 2018, 314 : 47 - 57
  • [8] A new inventory and future projections of thermokarst lakes in the permafrost regions of the Qilian Mountains, northeastern Qinghai-Tibet Plateau, China
    Tian, Weiwei
    Peng, Xiaoqing
    Frauenfeld, Oliver W.
    Weisai, Lajia
    Wei, Gang
    Chen, Guanqun
    Huang, Yuan
    [J]. GEOMORPHOLOGY, 2024, 462
  • [9] Sentinel-Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai-Tibet Plateau
    Wei, Zhiqiang
    Du, Zhiheng
    Wang, Lei
    Lin, Jiahui
    Feng, Yaru
    Xu, Qian
    Xiao, Cunde
    [J]. EARTH AND SPACE SCIENCE, 2021, 8 (11)
  • [10] Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau
    Jin, HuiJun
    Luo, DongLiang
    Wang, ShaoLing
    Lue, LanZhi
    Wu, JiChun
    [J]. SCIENCES IN COLD AND ARID REGIONS, 2011, 3 (04): : 281 - 305