Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers

被引:0
|
作者
Song, Yansui [1 ]
Sun, Shaoshan [2 ]
Tao, Chenggang [2 ]
He, Zhen [3 ]
Xu, Bin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Chengdu Aircraft Design & Res Inst, Chengdu 610041, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Fixed-wing unmanned aerial vehicle; Event-triggered; Trajectory optimization; Incremental dynamic inverse control; Perched landing maneuvers; TRAJECTORY OPTIMIZATION; TRACKING;
D O I
10.1007/s10846-024-02063-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers
    Yansui Song
    Shaoshan Sun
    Chenggang Tao
    Zhen He
    Bin Xu
    Journal of Intelligent & Robotic Systems, 2024, 110
  • [2] Autonomous Landing Algorithm of Fixed-Wing Unmanned Aerial Vehicle Based on Visual Guidance
    Hu Yunqiang
    Cao Yunfeng
    Zhuang Likui
    Song Xiaofeng
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (14)
  • [3] Vision-based guidance for fixed-wing unmanned aerial vehicle autonomous carrier landing
    Zhang, Zhouyu
    Cao, Yunfeng
    Ding, Meng
    Zhuang, Likui
    Tao, Jiang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2019, 233 (08) : 2894 - 2913
  • [4] Autonomous Control of Running Takeoff and Landing for a Fixed-Wing Unmanned Aerial Vehicle
    Zhang Daibing
    Wang Xun
    Kong Weiwei
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 990 - 994
  • [5] Model for Longitudinal Perch Maneuvers of a Fixed-Wing Unmanned Aerial Vehicle
    Puopolo, Michael
    Jacob, J. D.
    JOURNAL OF AIRCRAFT, 2015, 52 (06): : 2021 - 2031
  • [6] An Adaptive Control Framework for the Autonomous Aerobatic Maneuvers of Fixed-Wing Unmanned Aerial Vehicle
    Cao, Su
    Yu, Huangchao
    DRONES, 2022, 6 (11)
  • [7] Vision algorithms for fixed-wing unmanned aerial vehicle landing system
    FAN YanMing
    DING Meng
    CAO YunFeng
    Science China(Technological Sciences), 2017, 60 (03) : 434 - 443
  • [8] Vision algorithms for fixed-wing unmanned aerial vehicle landing system
    Fan, YanMing
    Ding, Meng
    Cao, YunFeng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (03) : 434 - 443
  • [9] Vision algorithms for fixed-wing unmanned aerial vehicle landing system
    FAN YanMing
    DING Meng
    CAO YunFeng
    Science China(Technological Sciences) , 2017, (03) : 434 - 443
  • [10] Vision algorithms for fixed-wing unmanned aerial vehicle landing system
    YanMing Fan
    Meng Ding
    YunFeng Cao
    Science China Technological Sciences, 2017, 60 : 434 - 443