Quantum magnetic gradiometer with entangled twin light beams

被引:13
|
作者
Wu, Shuhe [1 ,2 ]
Bao, Guzhi [1 ,2 ]
Guo, Jinxian [1 ,2 ]
Chen, Jun [1 ,2 ]
Du, Wei [1 ,2 ]
Shi, Minwei [1 ,2 ]
Yang, Peiyu [1 ,2 ]
Chen, Liqing [2 ,3 ]
Zhang, Weiping [1 ,2 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[2] Hefei Natl Lab, Shanghai Branch, Shanghai 201315, Peoples R China
[3] East China Normal Univ, Quantum Inst Light & Atom, Dept Phys, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MAGNETOMETERS; RESONANCE; NOISE;
D O I
10.1126/sciadv.adg1760
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the past few decades, optical magnetometry has experienced remarkable development and reached to an outstanding sensitivity. For magnetometry based on optical readout of atomic ensemble, the fundamental lim-itation of sensitivity is restricted by spin projection noise and photon shot noise. Meanwhile, in practical appli-cations, ambient magnetic noise also greatly limits the sensitivity. To achieve the best sensitivity, it is essential to find an efficacious way to eliminate the noises from different sources, simultaneously. Here, we demonstrate a quantum magnetic gradiometer with sub-shot-noise sensitivity using entangled twin beams with differential detection. The quantum enhancement spans a frequency range from 7 Hz to 6 MHz with maximum squeezing of p ffiffiffiffififfi 5.5 dB below the quantum noise limit. The sensitivity of gradiometer reaches 18 fT/cm Hz at 20 Hz. Our study inspires future possibilities to use quantum-enhanced technology in developing sensitive magnetometry for practical applications in noisy and physically demanding environments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Spatial Quantum Correlations in Entangled Twin Beams
    Marino, Alberto M.
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 184 - 184
  • [2] Spatially entangled atomic deflections in twin-photon light beams
    Kryuchkyan, Gagik Yu.
    Macovei, Mihai
    Keitel, Christoph H.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [3] Experimental characterization of quantum-correlated twin beams and a quantum channel with twin beams
    Zhang, Y
    Hayasaka, K
    Kasai, K
    [J]. OPTICS AND SPECTROSCOPY, 2005, 99 (02) : 181 - 184
  • [4] Experimental characterization of quantum-correlated twin beams and a quantum channel with twin beams
    Y. Zhang
    K. Hayasaka
    K. Kasai
    [J]. Optics and Spectroscopy, 2005, 99 : 181 - 184
  • [5] Information encoding in the spatial correlations of entangled twin beams
    Nirala, Gaurav
    Pradyumna, Siva T.
    Kumar, Ashok
    Marino, Alberto M.
    [J]. SCIENCE ADVANCES, 2023, 9 (22)
  • [6] Control of the size of the coherence area in entangled twin beams
    Holtfrerich, M. W.
    Marino, A. M.
    [J]. PHYSICAL REVIEW A, 2016, 93 (06)
  • [7] Correlated imaging with entangled light beams
    Gatti, A
    Brambilla, E
    Lugiato, LA
    [J]. QUANTUM COMMUNICATIONS AND QUANTUM IMAGING, 2004, 5161 : 192 - 203
  • [8] QUANTUM CORRELATED TWIN BEAMS
    RARITY, JG
    TAPSTER, PR
    LEVENSON, JA
    GARREAU, JC
    ABRAM, I
    MERTZ, J
    DEBUISSCHERT, T
    HEIDMANN, A
    FABRE, C
    GIACOBINO, E
    [J]. APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 55 (03): : 250 - 257
  • [9] PULSED TWIN BEAMS OF LIGHT
    AYTUR, O
    KUMAR, P
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (13) : 1551 - 1554
  • [10] Quantum key distribution with bright entangled beams
    Silberhorn, C
    Korolkova, N
    Leuchs, G
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (16) : 4