Albert algebras over Z and other rings

被引:2
|
作者
Garibaldi, Skip [1 ]
Petersson, Holger P. [2 ]
Racine, Michel L. [3 ]
机构
[1] IDA Ctr Commun Res La Jolla, 4320 Westerra Ct, San Diego, CA 92121 USA
[2] Fern Univ Hagen, Fak Math & Informat, D-58084 Hagen, Germany
[3] Univ Ottawa, Dept Math & Stat, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
关键词
17C40; 17C30; 20G41; SPRINGER-TITS CONSTRUCTIONS; FREUDENTHAL TRIPLE-SYSTEMS; JORDAN ALGEBRAS; OCTONION ALGEBRAS; EXCEPTIONAL GROUPS; LIE-ALGEBRAS; SPACES; FORMS; CLASSIFICATION; EQUIVALENCES;
D O I
10.1017/fms.2023.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type F4, E6, or E7. We study these objects over an arbitrary base ring R, with particular attention to the case R = Z. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
引用
收藏
页数:38
相关论文
共 50 条