On Bayesian predictive density estimation for skew-normal distributions

被引:0
|
作者
Kortbi, Othmane [1 ]
机构
[1] UAE Univ, Dept Stat & Business Analyt, Al Ain, U Arab Emirates
关键词
Skew-normal distributions; Predictive densities; Minimax estimators; Admissibility; Kullback-Leibler loss; Bayes estimators;
D O I
10.1007/s00184-024-00946-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with prediction for skew-normal models, and more specifically the Bayes estimation of a predictive density for Y mu similar to SNp(mu,vyIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_y I_p, \lambda )$$\end{document} under Kullback-Leibler loss, based on X mu similar to SNp(mu,vxIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_x I_p, \lambda )$$\end{document} with known dependence and skewness parameters. We obtain representations for Bayes predictive densities, including the minimum risk equivariant predictive density p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} which is a Bayes predictive density with respect to the noninformative prior pi 0 equivalent to 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0\equiv 1$$\end{document}. George et al. (Ann Stat 34:78-91, 2006) used the parallel between the problem of point estimation and the problem of estimation of predictive densities to establish a connection between the difference of risks of the two problems. The development of similar connection, allows us to determine sufficient conditions of dominance over p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} and of minimaxity. First, we show that p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} is a minimax predictive density under KL risk for the skew-normal model. After this, for dimensions p >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 3$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the subclass of skew-normal distributions with small value of skewness parameter. Moreover, for dimensions p >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 4$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the whole class of skew-normal distributions. Examples of proper priors, including generalized student priors, generating Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, were constructed when p >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document}. This findings represent an extension of Liang and Barron (IEEE Trans Inf Theory 50(11):2708-2726, 2004), George et al. (Ann Stat 34:78-91, 2006) and Komaki (Biometrika 88(3):859-864, 2001) results to a subclass of asymmetrical distributions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An appropriate empirical version of skew-normal density
    Abtahi, A.
    Towhidi, M.
    Behboodian, J.
    STATISTICAL PAPERS, 2011, 52 (02) : 469 - 489
  • [32] An appropriate empirical version of skew-normal density
    A. Abtahi
    M. Towhidi
    J. Behboodian
    Statistical Papers, 2011, 52 : 469 - 489
  • [33] A skew-normal dynamic linear model and Bayesian forecasting
    Arellano-Valle, Reinaldo B.
    Contreras-Reyes, Javier E.
    Lopez Quintero, Freddy O.
    Valdebenito, Abel
    COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1055 - 1085
  • [34] A skew-normal dynamic linear model and Bayesian forecasting
    Reinaldo B. Arellano-Valle
    Javier E. Contreras-Reyes
    Freddy O. López Quintero
    Abel Valdebenito
    Computational Statistics, 2019, 34 : 1055 - 1085
  • [35] INTRODUCTION TO THE THEME ISSUE: THE SKEW-NORMAL AND RELATED DISTRIBUTIONS
    Giannerini, Simone
    Montanari, Angela
    STATISTICA, 2020, 80 (02) : 127 - 130
  • [36] Scale mixtures of multivariate centered skew-normal distributions
    de Freitas, Joao Victor B.
    Bondon, Pascal
    Azevedo, Caio L. N.
    Reisen, Valderio A.
    Nobre, Juvencio S.
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [37] Bayesian inference for skew-normal linear mixed models
    Arellano-Valle, R. B.
    Bolfarine, H.
    Lachos, V. H.
    JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 663 - 682
  • [38] Finite mixture of semiparametric multivariate skew-normal distributions
    Lee, Hyunjae
    Seo, Byungtae
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (11) : 5659 - 5679
  • [39] Multivariate skew-normal distributions with applications in insurance.
    Raluca, V
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 376 - 376
  • [40] On a class of two-piece skew-normal distributions
    Kim, HJ
    STATISTICS, 2005, 39 (06) : 537 - 553