Finite-Time Control of High-Order Nonlinear Random Systems Using State Triggering Signals

被引:12
|
作者
Li, Hao [1 ]
Hua, Changchun [1 ]
Li, Kuo [2 ]
Li, Qidong [1 ]
机构
[1] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
[2] Univ Duisburg Essen, Inst Automat Control & Complex Syst, D-47057 Duisburg, Germany
基金
中国国家自然科学基金;
关键词
Nonlinear systems; Mathematical models; Stochastic processes; Colored noise; Thermal stability; Actuators; White noise; Intermittent signals; double event-triggered control; finite-time control; high-order random systems; STABILIZATION; CONSTRAINTS;
D O I
10.1109/TCSI.2023.3257868
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the efficiency of data transmission and save communication resources, the problems of double event-triggered control are investigated for a class of high-order nonlinear random systems. Under more general system conditions, in addition to overcoming the difficulty of recursive design caused by signal discontinuity, the effects of high-order nonlinearity and random disturbances also need to be addressed. Based on the adding power integral technique, a practical finite-time stable result is established for the nonlinear random systems under a double event-triggered mechanism (ETM) and proved that there is no Zeno phenomenon. Compared with the existing results, the update frequency of the signals is effectively reduced, and the upper bound of the stable error is independent of trigger parameters, thus can be made sufficiently small by tuning design parameters. Furthermore, the result is expanded to finite-time stabilization, state variables converge to the origin in a finite time. Finally, numerical simulations verify the effectiveness of the proposed algorithm.
引用
收藏
页码:2587 / 2598
页数:12
相关论文
共 50 条
  • [1] Finite-Time Control for High-Order Random Nonlinear Systems With Unknown Control Coefficients
    Xi, Ruipeng
    Zhang, Huaguang
    Mu, Yunfei
    Wang, Yingchun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 3172 - 3181
  • [2] Finite-time state-feedback control for a class of stochastic high-order nonlinear systems
    Zha, Wenting
    Zhai, Junyong
    Ai, Weiqing
    Fei, Shumin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (03) : 643 - 660
  • [3] Adaptive finite-time control for high-order nonlinear systems with mismatched disturbances
    Yang, Hongjiu
    Wang, Yingjie
    Yang, Yana
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (09) : 1296 - 1307
  • [4] FINITE-TIME STABILIZATION OF STOCHASTIC HIGH-ORDER NONLINEAR SYSTEMS
    Zhang, Xing-Hui
    Zhang, Kemei
    Xie, Xue-Jun
    ASIAN JOURNAL OF CONTROL, 2016, 18 (06) : 2244 - 2255
  • [5] Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems
    Xie, Xue-Jun
    Zhang, Xing-Hui
    Zhang, Kemei
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (07) : 1332 - 1341
  • [6] Finite-time tracking control for a class of high-order nonlinear systems and its applications
    Cheng, Yingying
    Du, Haibo
    He, Yigang
    Jia, Ruting
    NONLINEAR DYNAMICS, 2014, 76 (02) : 1133 - 1140
  • [7] Robust Finite-Time Stability Control of a Class of High-Order Uncertain Nonlinear Systems
    Liu, Haitao
    Wang, Xiaozhen
    Zhang, Tie
    ASIAN JOURNAL OF CONTROL, 2015, 17 (03) : 1081 - 1087
  • [8] Finite-time tracking control for a class of high-order nonlinear systems and its applications
    Yingying Cheng
    Haibo Du
    Yigang He
    Ruting Jia
    Nonlinear Dynamics, 2014, 76 : 1133 - 1140
  • [9] Finite-time stabilisation for high-order nonlinear systems with low-order and high-order nonlinearities
    Zhang, Kemei
    Zhang, Xing-Hui
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (08) : 1576 - 1585
  • [10] Finite-time Stabilization of A Class of High-order Stochastic Nonlinear Systems
    Khoo, Suiyang
    Yin, Juliang
    Man, Zhihong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 1637 - 1641