A comparison of human skeleton extractors for real-time human-robot interaction

被引:1
|
作者
Li, Wanchen [1 ]
Passama, Robin [1 ]
Bonnet, Vincent [2 ]
Cherubini, Andrea [1 ]
机构
[1] Univ Montpellier, CNRS, Interact Digital Humans Grp, LIRMM, 161 Rue Ada, F-34095 Montpellier, France
[2] INSA Toulouse, LAAS CNRS, 7 Ave Colonel Roche, F-31400 Toulouse, France
关键词
human-robot interaction; activity recognition; 3D skeleton detection; computer vision;
D O I
10.1109/ARSO56563.2023.10187411
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern industrial manufacturing procedures gradually integrate physical Human-Robot interaction (pHRI) scenarios. This requires robots to understand human intentions for effective and safe cooperation. Vision is the most commonly used sensor modality for robots to perceive human behavior. In this paper, we compare various vision-based human skeleton extraction frameworks, to provide guidance for the design of human-robot interaction applications. We run various skeleton extractors on a video of a person working with the help of a dual-arm collaborative robot, in a scenario simulating a typical human-robot workspace. By comparing the outcomes of the various skeleton extractors, we justify our choices according to pHRI constraints.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [1] Real-time safety for human-robot interaction
    Kulic, D
    Croft, EA
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2006, 54 (01) : 1 - 12
  • [2] Real-time safety for human-robot interaction
    Kulic, D
    Croft, EA
    [J]. 2005 12TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, 2005, : 719 - 724
  • [3] Real-time human motion analysis for human-robot interaction
    Molina-Tanco, L
    Bandera, JP
    Marfil, R
    Sandoval, F
    [J]. 2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 1808 - 1813
  • [4] Real-Time Recognition of Human Postures for Human-Robot Interaction
    Zafar, Zuhair
    Venugopal, Rahul
    Berns, Karsten
    [J]. ACHI 2018: THE ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER-HUMAN INTERACTIONS, 2018, : 114 - 119
  • [5] Real-time Face Tracking for Human-Robot Interaction
    Putro, Muhamad Dwisnanto
    Jo, Kang-Hyun
    [J]. 2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY ROBOTICS (ICT-ROBOT), 2018,
  • [6] Real-Time Face Recognition for Human-Robot Interaction
    Cruz, Claudia
    Enrique Sucar, L.
    Morales, Eduardo F.
    [J]. 2008 8TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2008), VOLS 1 AND 2, 2008, : 679 - 684
  • [7] Real-time Framework for Multimodal Human-Robot Interaction
    Gast, Juergen
    Bannat, Alexander
    Rehrl, Tobias
    Wallhoff, Frank
    Rigoll, Gerhard
    Wendt, Cornelia
    Schmidt, Sabrina
    Popp, Michael
    Faerber, Berthold
    [J]. HSI: 2009 2ND CONFERENCE ON HUMAN SYSTEM INTERACTIONS, 2009, : 273 - 280
  • [8] Skeleton-based bio-inspired human activity prediction for real-time human-robot interaction
    Reily, Brian
    Han, Fei
    Parker, Lynne E.
    Zhang, Hao
    [J]. AUTONOMOUS ROBOTS, 2018, 42 (06) : 1281 - 1298
  • [9] Towards Real-time Physical Human-Robot Interaction using Skeleton Information and Hand Gestures
    Mazhar, Osama
    Ramdani, Sofiane
    Navarro, Benjamin
    Passama, Robin
    Cherubini, Andrea
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7336 - 7341
  • [10] Human-Robot Interaction in Real Time
    Jaluvka, Michal
    Volna, Eva
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2018 (ICCMSE-2018), 2018, 2040