Self-assembled hierarchical porous nanoarchitectured 2,6-diaminopyridine decorated N-doped reduced graphene oxide as advanced electrode for high-performance aqueous Zn-ion hybrid supercapacitors

被引:7
|
作者
Gu, Zhengyan [1 ]
Zhang, Weiyang [1 ]
Li, Xiaona [1 ]
Zhang, Shouren [1 ]
Kang, Hongwei [2 ]
Yang, Baocheng [1 ]
Li, Zhikun [1 ]
机构
[1] Huanghe Sci & Technol Coll, Inst Nanostruct Funct Mat, Henan Key Lab Nanocomposite & Applicat, Zhengzhou City Key Lab Supercapacitor, Zhengzhou 450006, Peoples R China
[2] Fuyang Normal Univ, Engn Res Ctr Biomass Convers & Pollut Prevent Anhu, Sch Chem & Mat Engn, Fuyang 236037, Peoples R China
基金
中国国家自然科学基金;
关键词
N-RGO; DAP nanocomposites; Double; -modified; Excellent performance; Zn-ion hybrid supercapacitor; ENERGY-STORAGE; DEVICES; CELLS;
D O I
10.1016/j.electacta.2023.142164
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
2,6-diaminopyridine (DAP), an active organic molecule containing amino groups and pyridine N is expected to be an attractive material for energy storage due to its fast and reversible proton-involved redox activity. Herein, the novel N-doped (or CNTs) and DAP organic molecules double-modified reduced graphene oxide nano -composites with hierarchical porous nanoarchitectures were successfully designed and synthesized by a simple solvothermal method. Benefiting from the advantages of the three components and the positive synergistic enhancement between them, the newly synthesized N-RGO/DAP and CNTs/RGO/DAP nanocomposites exhibit excellent electrochemical properties, such as high specific capacitance, excellent rate capability and cycling stability. Furthermore, the Zn-ion hybrid supercapacitor further assembled with the optimal N-RGO/DAP as cathode delivers excellent Zn-ion energy storage performance in aqueous electrolyte, with a high specific capacitance (capacity) of 320.2 F g-1 (158.3 mAh g-1), excellent energy density of 140.9 Wh kg- 1 at a power density of 534 W kg -1, and an ultra-long durability of 95.3% capacitance retention after 16,000 cycles at a large current of 100 mV s-1. This paper provides a novel strategy and advanced electrode nanocomposite with excellent electrochemical properties, which shows great promise in high-performance energy storage devices with high-flexibility, light-weight and sustainability.
引用
收藏
页数:12
相关论文
共 39 条
  • [1] N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors
    Gu, Yun
    Fan, Le-Qing
    Huang, Jian-Ling
    Geng, Cheng-Long
    Lin, Jian-Ming
    Huang, Miao-Liang
    Huang, Yun-Fang
    Wu, Ji-Huai
    JOURNAL OF POWER SOURCES, 2019, 425 : 60 - 68
  • [2] Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon
    Wei, Yinghua
    Chen, Xiaojuan
    Gao, Gexiang
    Shen, Daozheng
    Rong, Hongren
    Liu, Qi
    IONICS, 2022, 28 (07) : 3477 - 3488
  • [3] Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon
    Yinghua Wei
    Xiaojuan Chen
    Gexiang Gao
    Daozheng Shen
    Hongren Rong
    Qi Liu
    Ionics, 2022, 28 : 3477 - 3488
  • [4] A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance
    Deng, Xiaoyang
    Li, Jiajun
    Shan, Zhu
    Sha, Junwei
    Ma, Liying
    Zhao, Naiqin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (23) : 11617 - 11625
  • [5] High-performance Zn-ion hybrid supercapacitor enabled by the hierarchical N/S co-doped graphene/polyaniline cathode
    Song, Tianliang
    Hao, Huilian
    Zhao, Yue
    Wang, Xu
    Li, Changwang
    Li, Wenyao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [6] A Hollow-Shaped ZIF-8-N-Doped Porous Carbon Fiber for High-Performance Zn-Ion Hybrid Supercapacitors
    Wei, Mingqi
    Jiang, Zhenlong
    Yang, Chengcheng
    Jiang, Tao
    Zhang, Linlin
    Zhao, Guangzhen
    Zhu, Guang
    Yu, Lianghao
    Zhu, Yuanyuan
    BATTERIES-BASEL, 2023, 9 (08):
  • [7] Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries
    Wu, Yunzhao
    Tao, Ye
    Zhang, Xianfu
    Zhang, Kai
    Chen, Shengbin
    Liu, Yu
    Ding, Yong
    Cai, Molang
    Liu, Xuepeng
    Dai, Songyuan
    SCIENCE CHINA-MATERIALS, 2020, 63 (07) : 1196 - 1204
  • [8] Explosive effect-assisted synthesis of hierarchical porous carbon for high-performance aqueous Zn-ion hybrid supercapacitors with commercial level mass loading
    Zhang, Ying
    Li, Xue
    Li, Yanzhen
    Zhang, Xin
    Yu, Dengfeng
    Chen, Chunxia
    Zhao, Gongyuan
    ELECTROCHIMICA ACTA, 2023, 447
  • [9] Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors
    Zhang, Suhui
    Gao, Hui
    Zhou, Jinyuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 746 : 549 - 556
  • [10] High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon
    Fu, Yanqing
    Wei, Qiliang
    Zhang, Gaixia
    Wang, Xiaomin
    Zhang, Jihai
    Hu, Yongfeng
    Wang, Dongniu
    Zuin, Lucia
    Zhou, Tao
    Wu, Yucheng
    Sun, Shuhui
    ADVANCED ENERGY MATERIALS, 2018, 8 (26)