Pose estimation via structure-depth information from monocular endoscopy images sequence

被引:0
|
作者
Liu, Shiyuan [1 ,2 ]
Fan, Jingfan [1 ]
Zang, Liugeng [1 ]
Yang, Yun [3 ,4 ]
Fu, Tianyu [5 ]
Song, Hong [6 ]
Wang, Yongtian [1 ]
Yang, Jian [1 ]
机构
[1] Beijing Inst Technol, Beijing Engn Res Ctr Mixed Real & Adv Display, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] China Ctr Informat Ind Dev, Beijing 100081, Peoples R China
[3] Capital Med Univ, Beijing Friendship Hosp, Dept Gen Surg, Beijing 100050, Peoples R China
[4] Natl Clin Res Ctr Digest Dis, Beijing 100050, Peoples R China
[5] Inst Engn Med, Beijing Inst Technol, Beijing 100081, Peoples R China
[6] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
AUGMENTED REALITY; 3D RECONSTRUCTION; LOCALIZATION; REGISTRATION; NAVIGATION; GUIDANCE; SURGERY; VIDEOS; SYSTEM; SLAM;
D O I
10.1364/BOE.498262
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Image -based endoscopy pose estimation has been shown to significantly improve the visualization and accuracy of minimally invasive surgery (MIS). This paper proposes a method for pose estimation based on structure -depth information from a monocular endoscopy image sequence. Firstly, the initial frame location is constrained using the image structure difference (ISD) network. Secondly, endoscopy image depth information is used to estimate the pose of sequence frames. Finally, adaptive boundary constraints are used to optimize continuous frame endoscopy pose estimation, resulting in more accurate intraoperative endoscopy pose estimation. Evaluations were conducted on publicly available datasets, with the pose estimation error in bronchoscopy and colonoscopy datasets reaching 1.43 mm and 3.64 mm, respectively. These results meet the real-time requirements of various scenarios, demonstrating the capability of this method to generate reliable pose estimation results for endoscopy images and its meaningful applications in clinical practice. This method enables accurate localization of endoscopy images during surgery, assisting physicians in performing safer and more effective procedures. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:460 / 478
页数:19
相关论文
共 50 条
  • [1] Monocular Human Depth Estimation Via Pose Estimation
    Jun, Jinyoung
    Lee, Jae-Han
    Lee, Chul
    Kim, Chang-Su
    [J]. IEEE ACCESS, 2021, 9 : 151444 - 151457
  • [2] DEPTH ESTIMATION FROM A SEQUENCE OF MONOCULAR IMAGES WITH KNOWN CAMERA MOTION
    ZHANG, HQ
    SUDHAKAR, R
    SHIEH, JY
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 1994, 13 (02) : 87 - 95
  • [3] Self-supervised Monocular Pose and Depth Estimation for Wireless Capsule Endoscopy with Transformers
    Nazifi, Nahid
    Araujo, Helder
    Erabati, Gopi Krishna
    Tahri, Omar
    [J]. IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, MEDICAL IMAGING 2024, 2024, 12928
  • [4] Monocular endoscopy images depth estimation with multi-scale residual fusion
    Liu, Shiyuan
    Fan, Jingfan
    Yang, Yun
    Xiao, Deqiang
    Ai, Danni
    Song, Hong
    Wang, Yongtian
    Yang, Jian
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [5] Human Pose Estimation from Monocular Images: A Comprehensive Survey
    Gong, Wenjuan
    Zhang, Xuena
    Gonzalez, Jordi
    Sobral, Andrews
    Bouwmans, Thierry
    Tu, Changhe
    Zahzah, El-hadi
    [J]. SENSORS, 2016, 16 (12)
  • [6] Bayesian depth estimation from monocular natural images
    Su, Che-Chun
    Cormack, Lawrence K.
    Bovik, Alan C.
    [J]. JOURNAL OF VISION, 2017, 17 (05):
  • [7] Dataset generation and validation for spacecraft pose estimation via monocular images processing
    Bechini, Michele
    Lavagna, Michele
    Lunghi, Paolo
    [J]. ACTA ASTRONAUTICA, 2023, 204 : 358 - 369
  • [8] Nonlinear body pose estimation from depth images
    Grest, D
    Woetzel, J
    Koch, R
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2005, 3663 : 285 - 292
  • [9] Face-from-Depth for Head Pose Estimation on Depth Images
    Borghi, Guido
    Fabbri, Matteo
    Vezzani, Roberto
    Calderara, Simone
    Cucchiara, Rita
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (03) : 596 - 609
  • [10] Depth Estimation from Monocular Images and Sparse Radar Data
    Lin, Juan-Ting
    Dai, Dengxin
    Van Gool, Luc
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10233 - 10240