Data-centric artificial olfactory system based on the eigengraph

被引:4
|
作者
Sung, Seung-Hyun [1 ,2 ]
Suh, Jun Min [3 ,4 ]
Hwang, Yun Ji [1 ]
Jang, Ho Won [3 ,5 ]
Park, Jeon Gue [6 ,7 ]
Jun, Seong Chan [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 03722, South Korea
[2] Daejeon Metropolitan Off Educ, Finance Div, Daejeon 35239, South Korea
[3] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 08826, South Korea
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] Seoul Natl Univ, Adv Inst Convergence Technol, Suwon 16229, South Korea
[6] Tutorus Labs Inc, Artificial Intelligence Lab, Seoul 06595, South Korea
[7] Seoul Natl Univ, Coll Educ, Ctr Educ Res, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRONIC NOSE; GAS SENSORS; ODOR; REPRESENTATIONS; PERSPECTIVES; HIPPOCAMPUS; PERFORMANCE; RECEPTORS; AMYGDALA; MEMORY;
D O I
10.1038/s41467-024-45430-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies of electronic nose system tend to waste significant amount of important data in odor identification. Until now, the sensitivity-oriented data composition has made it difficult to discover meaningful data to apply artificial intelligence in terms of in-depth analysis for odor attributes specifying the identities of gas molecules, ultimately resulting in hindering the advancement of the artificial olfactory technology. Here, we realize a data-centric approach to implement standardized artificial olfactory systems inspired by human olfactory mechanisms by formally defining and utilizing the concept of Eigengraph in electrochemisty. The implicit odor attributes of the eigengraphs were mathematically substantialized as the Fourier transform-based Mel-Frequency Cepstral Coefficient feature vectors. Their effectiveness and applicability in deep learning processes for gas classification have been clearly demonstrated through experiments on complex mixed gases and automobile exhaust gases. We suggest that our findings can be widely applied as source technologies to develop standardized artificial olfactory systems. Sensitivity-dependent data analysis methods disrupted the development of artificial olfactory technologies. Here, authors present a data-centric artificial olfactory system based on eigengraph that reflects the intrinsic electrochemical interaction.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data-centric artificial olfactory system based on the eigengraph
    Seung-Hyun Sung
    Jun Min Suh
    Yun Ji Hwang
    Ho Won Jang
    Jeon Gue Park
    Seong Chan Jun
    [J]. Nature Communications, 15
  • [2] Data-Centric Artificial Intelligence
    Jakubik, Johannes
    Voessing, Michael
    Kuehl, Niklas
    Walk, Jannis
    Satzger, Gerhard
    [J]. BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2024, 66 (04) : 507 - 515
  • [3] Data-Centric Green Artificial Intelligence: A Survey
    Salehi, Shirin
    Schmeink, Anke
    [J]. IEEE Transactions on Artificial Intelligence, 2024, 5 (05): : 1973 - 1989
  • [4] A Type System for Data-Centric Synchronization
    Vaziri, Mandana
    Tip, Frank
    Dolby, Julian
    Hammer, Christian
    Vitek, Jan
    [J]. ECOOP 2010: OBJECT-ORIENTED PROGRAMMING, 2010, 6183 : 304 - 328
  • [5] Technical Analysis of Data-Centric and Model-Centric Artificial Intelligence
    Majeed, Abdul
    Hwang, Seong Oun
    [J]. IT PROFESSIONAL, 2023, 25 (06) : 62 - 70
  • [6] WAD Workflow System: Data-Centric Workflow System
    Robinson, Andrew J.
    Rahayu, Wenny J.
    Dillon, Tharam
    [J]. ASWEC 2009: 20TH AUSTRALIAN SOFTWARE ENGINEERING CONFERENCE, PROCEEDINGS, 2009, : 337 - +
  • [7] Data-Centric AI
    Malerba, Donato
    Pasquadibisceglie, Vincenzo
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024,
  • [8] The Euclid Archive System: A Data-Centric Approach to Big Data
    Nieto, S.
    Belikov, A. N.
    Williams, O. R.
    Altieri, B.
    Boxhoorn, D.
    Buenadicha, G.
    Droge, B.
    McFarland, J. P.
    Salgado, J.
    de Teodoro, P.
    Tsyganov, A.
    Valentijn, E. A.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVI, 2019, 521 : 12 - 15
  • [9] Uncovering Archaeological Sites in Airborne LiDAR Data With Data-Centric Artificial Intelligence
    Canedo, Daniel
    Fonte, Joao
    Seco, Luis Goncalves
    Vazquez, Marta
    Dias, Rita
    Do Pereiro, Tiago
    Hipolito, Joao
    Menendez-Marsh, Fernando
    Georgieva, Petia
    Neves, Antonio J. R.
    [J]. IEEE ACCESS, 2023, 11 : 65608 - 65619
  • [10] Data-centric automated data mining
    Campos, MM
    Stengard, PJ
    Milenova, BL
    [J]. ICMLA 2005: FOURTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2005, : 97 - 104