Underwater image enhancement based on multiscale fusion generative adversarial network

被引:5
|
作者
Dai, Yating [1 ]
Wang, Jianyu [1 ]
Wang, Hao [1 ]
He, Xin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
关键词
Deep learning methods; Generative adversarial network; Multiscale fusion; Underwater image enhancement;
D O I
10.1007/s13042-023-01970-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The underwater optical imaging environment presents unique challenges due to its complexity. This paper addresses the limitations of existing algorithms in handling underwater images captured in artificial light scenes. We proposed an underwater artificial light optimization algorithm to preprocess images with uneven lighting, mitigating the effects of light distortion. Furthermore, we proposed a novel underwater image enhancement algorithm based the Multiscale Fusion Generative Adversarial Network, named UMSGAN, to address the issues of low contrast and color distortion. UMSGAN uses the generative adversarial network as the underlying framework and first extracts information from the degraded image through three parallel branches separately, and adds residual dense blocks in each branch to learn deeper features. Subsequently, the features extracted from the three branches are fused and the detailed information of the image is recovered by the reconstruction module, named RM. Finally, multiple loss functions are linearly superimposed, and the adversarial network is trained iteratively to obtain the enhanced underwater images. The algorithm is designed to accommodate various underwater scenes, providing both color correction and detail enhancement. We conducted a comprehensive evaluation of the proposed algorithm, considering both qualitative and quantitative aspects. The experimental results demonstrate the effectiveness of our approach on a diverse underwater image dataset. The proposed algorithm exhibits superior performance in terms of enhancing underwater image quality, achieving significant improvements in contrast, color accuracy, and detail preservation. The proposed methodology exhibits promising results, offering potential applications in various domains such as underwater photography, marine exploration, and underwater surveillance.
引用
收藏
页码:1331 / 1341
页数:11
相关论文
共 50 条
  • [1] Underwater image enhancement based on multiscale fusion generative adversarial network
    Yating Dai
    Jianyu Wang
    Hao Wang
    Xin He
    [J]. International Journal of Machine Learning and Cybernetics, 2024, 15 (4) : 1331 - 1341
  • [2] Underwater Image Enhancement Based on Multiscale Generative Adversarial Network
    Lin Sen
    Liu Shiben
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [3] MDNet: A Fusion Generative Adversarial Network for Underwater Image Enhancement
    Zhang, Song
    Zhao, Shili
    An, Dong
    Li, Daoliang
    Zhao, Ran
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (06)
  • [4] Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network
    Guo, Yecai
    Li, Hanyu
    Zhuang, Peixian
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (03) : 862 - 870
  • [5] Underwater Image Enhancement Based on Generate Adversarial Network with Multiscale Feature Fusion
    Chen, Hui
    Wang, Shuo
    Xu, Jiachang
    Xiao, Zhexuan
    [J]. Computer Engineering and Applications, 2023, 59 (21) : 231 - 241
  • [6] Underwater Image Enhancement Based on Conditional Generative Adversarial Network
    Jin Weipei
    Guo Jichang
    Qi Qing
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [7] Underwater image enhancement based on conditional generative adversarial network
    Yang, Miao
    Hu, Ke
    Du, Yixiang
    Wei, Zhiqiang
    Sheng, Zhibin
    Hu, Jintong
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 81
  • [8] Underwater image enhancement method based on the generative adversarial network
    Yu, Jin-Tao
    Jia, Rui-Sheng
    Gao, Li
    Yin, Ruo-Nan
    Sun, Hong-Mei
    Zheng, Yong-Guo
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (01)
  • [9] Underwater Image Enhancement Based on Generative Adversarial Network with Preprocessed Image Penalty
    Song Wei
    Xing Jingjing
    Du Yanling
    He Qi
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)
  • [10] Underwater Image Enhancement Based on Hybrid Enhanced Generative Adversarial Network
    Xu, Danmi
    Zhou, Jiajia
    Liu, Yang
    Min, Xuyu
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)