Box-Counting Dimension in One-Dimensional Random Geometry of Multiplicative Cascades

被引:0
|
作者
Falconer, Kenneth J. [1 ]
Troscheit, Sascha [2 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
BRANCHING RANDOM-WALKS; CONVERGENCE; UNIQUENESS;
D O I
10.1007/s00220-022-04558-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the box-counting dimension of the image of a set E subset of R under a random multiplicative cascade function f. The corresponding result for Hausdorff dimension was established by Benjamini and Schramm in the context of random geometry, and for sufficiently regular sets, the same formula holds for the box-counting dimension. However, we show that this is far from true in general, and we compute explicitly a formula of a very different nature that gives the almost sure box-counting dimension of the random image f (E) when the set E comprises a convergent sequence. In particular, the box-counting dimension of f (E) depends more subtly on E than just on its dimensions. We also obtain lower and upper bounds for the box-counting dimension of the random images for general sets E.
引用
收藏
页码:57 / 83
页数:27
相关论文
共 50 条
  • [1] Box-Counting Dimension in One-Dimensional Random Geometry of Multiplicative Cascades
    Kenneth J. Falconer
    Sascha Troscheit
    [J]. Communications in Mathematical Physics, 2023, 399 : 57 - 83
  • [2] Box-counting dimension in one-dimensional random geometry of multiplicative cascades
    Falconer, Kenneth J.
    Troscheit, Sascha
    [J]. arXiv, 2022,
  • [3] KPZ in One Dimensional Random Geometry of Multiplicative Cascades
    Benjamini, Itai
    Schramm, Oded
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) : 653 - 662
  • [4] KPZ in One Dimensional Random Geometry of Multiplicative Cascades
    Itai Benjamini
    Oded Schramm
    [J]. Communications in Mathematical Physics, 2009, 289 : 653 - 662
  • [5] Approximate resolutions and box-counting dimension
    Miyata, T
    Watanabe, T
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2003, 132 (01) : 49 - 69
  • [6] The Box-Counting Dimension of Random Box-Like Self-Affine Sets
    Troscheit, Sascha
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (02) : 495 - 535
  • [7] ON THE PERFORMANCE OF BOX-COUNTING ESTIMATORS OF FRACTAL DIMENSION
    HALL, P
    WOOD, A
    [J]. BIOMETRIKA, 1993, 80 (01) : 246 - 252
  • [8] BOX-COUNTING DIMENSION COMPUTED BY α-DENSE CURVES
    Garcia, G.
    Mora, G.
    Redtwitz, D. A.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
  • [9] A spatial randomness test based on the box-counting dimension
    Caballero, Yolanda
    Giraldo, Ramon
    Mateu, Jorge
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (03) : 499 - 524
  • [10] Embedding properties of sets with finite box-counting dimension
    Margaris, Alexandros
    Robinson, James C.
    [J]. NONLINEARITY, 2019, 32 (10) : 3523 - 3547