Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models

被引:2
|
作者
Bocoum, Alassane Oumar [1 ]
Rasaei, Mohammad Reza [1 ]
机构
[1] Univ Tehran, Inst Petr Engn, Coll Engn, Sch Chem Engn, Tehran, Iran
关键词
CO2-water alternating gas; ANN; NSGA-II; Multi-objective optimization; Cumulative oil recovery; Net Present Value; WATER-ALTERNATING-GAS; ENHANCED-OIL-RECOVERY; DESIGN;
D O I
10.1016/j.apenergy.2023.121593
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In complex optimization processes such as CO2-water alternating gas (CO2-WAG), several iterative steps are needed before finding an optimal or sub-optimal set of solutions. This leads to time-consuming operations, especially when the simulation is run with a compositional simulator. Proxy models have been used to tackle this issue as they can replicate efficiently and accurately reservoir simulators in specific studies. However, the construction of such a proxy model, its basic database in particular, differs according to the designer and the objective function(s).In this study, a hybrid algorithm was designed that combined Artificial Neural Networks (ANN) and NSGA-II to find optimum solutions for a CO2-WAG injection process. The proxy model was developed based on a specific sampling method that considered the total injection time of a WAG cycle equal to one year and characterized by a new parameter, gas water injection time ratio (GWITR). The Latin Hypercube Design (LHD) is used to sample the inputs (bottom-hole flowing pressure of the producers, and water and gas injection rates) and the outputs are the cumulative oil recovery factor (FOE) and Net Present Value (NPV). After the proxy model was assessed, it was combined with Non-dominated Sorting Genetic Algorithm II (NSGA-II) to find the Pareto Front of the optimum solutions.The developed ANN model was able to predict the two outputs simultaneously with an R2 higher than 0.999 and an MSE of 6.5E-5. The found Pareto front, with good diversity and convergence, provided the operator with various solutions for decision-making.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-objective optimization of hydrocyclone by combining mechanistic and data-driven models
    Ye, Qing
    Duan, Peibo
    Kuang, Shibo
    Ji, Li
    Zou, Ruiping
    Yu, Aibing
    [J]. POWDER TECHNOLOGY, 2022, 407
  • [2] Machine learning with incomplete datasets using multi-objective optimization models
    Khorshidi, Hadi A.
    Kirley, Michael
    Aickelin, Uwe
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] The multi-objective optimization of combustion system operations based on deep data-driven models
    Tang, Zhenhao
    Zhang, Zijun
    [J]. ENERGY, 2019, 182 : 37 - 47
  • [4] Multi-Objective Evolutionary Design of Composite Data-Driven Models
    Polonskaia, Iana S.
    Nikitin, Nikolay O.
    Revin, Ilia
    Vychuzhanin, Pavel
    Kalyuzhnaya, Anna, V
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 926 - 933
  • [5] A Secure Federated Data-Driven Evolutionary Multi-Objective Optimization Algorithm
    Liu, Qiqi
    Yan, Yuping
    Ligeti, Peter
    Jin, Yaochu
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 191 - 205
  • [6] Data-driven multi-objective optimization for electric vehicle charging infrastructure
    Farhadi, Farzaneh
    Wang, Shixiao
    Palacin, Roberto
    Blythe, Phil
    [J]. ISCIENCE, 2023, 26 (10)
  • [7] Multi-objective combustion optimization based on data-driven hybrid strategy
    Zheng, Wei
    Wang, Chao
    Yang, Yajun
    Zhang, Yongfei
    [J]. ENERGY, 2020, 191
  • [8] Application of data-driven design optimization methodology to a multi-objective design optimization problem
    Zhao, H.
    Icoz, T.
    Jaluria, Y.
    Knight, D.
    [J]. JOURNAL OF ENGINEERING DESIGN, 2007, 18 (04) : 343 - 359
  • [9] Using Machine Learning to Improve Evolutionary Multi-Objective Optimization
    Alotaibi, Rakan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (06): : 203 - 211
  • [10] Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric Reactions Using Bisphosphine Ligands
    Dotson, Jordan J.
    van Dijk, Lucy
    Timmerman, Jacob C.
    Grosslight, Samantha
    Walroth, Richard C.
    Gosselin, Francis
    Puentener, Kurt
    Mack, Kyle A.
    Sigman, Matthew S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (01) : 110 - 121