Random subtrees and unimodal sequences in graphs

被引:0
|
作者
Luo, Zuwen [1 ,2 ]
Xu, Kexiang [1 ,2 ]
Tian, Jing [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Jiangsu, Peoples R China
[2] MIIT Key Lab Math Modelling & High Performance Com, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Random subtree; Complete graph; Unimodal sequence;
D O I
10.1016/j.disc.2023.113654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete graph Kn and a nonnegative integer k, we study the probability that a random subtree of Kn has exactly n - k vertices and show that it approaches a limiting value of e-k-e-1 k! as n tends to infinity. We also consider the (conditional) probability that a random subtree of Kn contains a given edge, and more generally, a fixed subtree. In particular, if e and f are adjacent edges of Kn, Chin, Gordon, MacPhee and Vincent [J. Graph Theory 89 (2018), 413-438] conjectured that P[e & SUBE; T | f & SUBE; T] & LE; P[e & SUBE; T]. We prove this conjecture and further prove that P[e & SUBE; T | f & SUBE; T] tends to three-quarters of P[e & SUBE; T] as n & RARR; & INFIN;. Finally, several classes of graphs are given, such as star plus an edge, lollipop graph and glasses graph, whose subtree polynomials are unimodal.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SUBTREES OF THE UNIMODAL MAPS TREE
    LAMPREIA, JP
    DASILVA, AR
    RAMOS, JS
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5C (01): : 159 - 167
  • [2] Generation of random chordal graphs using subtrees of a tree
    Seker, Oylum
    Heggernes, Pinar
    Ekim, Tinaz
    Taskin, Z. Caner
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) : 565 - 582
  • [3] Subtrees of graphs
    Chin, Alex J.
    Gordon, Gary
    MacPhee, Kellie J.
    Vincent, Charles
    JOURNAL OF GRAPH THEORY, 2018, 89 (04) : 413 - 438
  • [4] SUBTREES AND SUBFORESTS OF GRAPHS
    BRANDT, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (01) : 63 - 70
  • [5] DEGREE SEQUENCES OF RANDOM GRAPHS
    BOLLOBAS, B
    DISCRETE MATHEMATICS, 1981, 33 (01) : 1 - 19
  • [6] INTERSECTION GRAPHS OF CONCATENABLE SUBTREES OF GRAPHS
    GAVRIL, F
    URRUTIA, J
    DISCRETE APPLIED MATHEMATICS, 1994, 52 (02) : 195 - 209
  • [7] INTERSECTION GRAPHS OF PROPER SUBTREES OF UNICYCLIC GRAPHS
    GAVRIL, F
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 615 - 627
  • [8] Chromatic number and subtrees of graphs
    Xu, Baogang
    Zhang, Yingli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 441 - 457
  • [9] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457
  • [10] On the modularity of 3-regular random graphs and random graphs with given degree sequences
    Lichev, Lyuben
    Mitsche, Dieter
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 754 - 802