Finite Abelian groups with positive genus subgroup intersection graphs

被引:0
|
作者
Zhu, Ling [1 ]
Su, Huadong [2 ]
机构
[1] Jiangxi Univ Appl Sci, Sch Software & Blockchain, Nanchang 330100, Jiangxi, Peoples R China
[2] Beibu Gulf Univ, Sch Sci, Qinzhou 535011, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-oritentable genus; subgroup intersection graph; abelian group; RINGS;
D O I
10.1142/S0219498824502505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The intersection graph of subgroups of a finite group G is a graph whose vertices are all nontrivial subgroups of G and in which two distinct vertices H and K are adjacent if and only if H n K ? 1. The non-orientable genus of a graph G is the smallest positive integer n such that G can be embedded on S-n (N-n), where S(n )and N(n )are the surface obtained from the sphere by attaching n handles and the sphere with n added crosscaps, respectively. In this paper, we classify all finite abelian groups whose non-oritentable genus of intersection graphs of subgroups are 1-3, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SUBGROUP INTERSECTION GRAPH OF FINITE ABELIAN GROUPS
    Chelvam, T. Tamizh
    Sattanathan, M.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (03) : 5 - 10
  • [2] Subgroup Sum Graphs of Finite Abelian Groups
    Cameron, Peter J.
    Prathap, R. Raveendra
    Chelvam, T. Tamizh
    GRAPHS AND COMBINATORICS, 2022, 38 (04)
  • [3] Subgroup Sum Graphs of Finite Abelian Groups
    Peter J. Cameron
    R. Raveendra Prathap
    T. Tamizh Chelvam
    Graphs and Combinatorics, 2022, 38
  • [4] INTERSECTION GRAPHS OF FINITE ABELIAN-GROUPS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (02) : 171 - 174
  • [5] Remark on subgroup intersection graph of finite abelian groups
    Zhao, Jinxing
    Deng, Guixin
    OPEN MATHEMATICS, 2020, 18 : 1025 - 1029
  • [6] Subgroup separability of graphs of abelian groups
    Metaftsis, V
    Raptis, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) : 1873 - 1884
  • [7] ON THE GENUS OF THE COMMUTING GRAPHS OF FINITE NON-ABELIAN GROUPS
    Das, Ashish Kumar
    Nongsiang, Deiborlang
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 : 91 - 109
  • [8] Abelian groups with isomorphic intersection graphs
    Kayacan, S.
    Yaraneri, E.
    ACTA MATHEMATICA HUNGARICA, 2015, 146 (01) : 107 - 127
  • [9] Abelian groups with isomorphic intersection graphs
    S. Kayacan
    E. Yaraneri
    Acta Mathematica Hungarica, 2015, 146 : 107 - 127
  • [10] Genus and crosscap of normal subgroup based power graphs of finite groups
    Parveen, Jitender
    Manisha
    Kumar, Jitender
    RICERCHE DI MATEMATICA, 2024, : 949 - 961