Asymptotic stability of boundary layer to the multi-dimensional isentropic Euler-Poisson equations arising in plasma physics

被引:1
|
作者
Chen, Yufeng [1 ,2 ]
Ding, Wenjuan [1 ,2 ]
Gao, Junpei [1 ,2 ]
Lin, Mengyuan [1 ,2 ]
Ruan, Lizhi [1 ,2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Key Lab NAA, MOE, Wuhan 430079, Peoples R China
关键词
35B35; 35B40; 35B45; 35M33; 35Q35; QUASI-NEUTRAL LIMIT; BOHM CRITERION; SYSTEM; SHEATHS;
D O I
10.1007/s00526-024-02680-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the initial-boundary value problem on the isentropic Euler-Poisson equations arising in plasma physics in the half space for the spatial dimension n=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1, 2, 3$$\end{document}. By assuming that the velocity of the positive ion satisfies the Bohm criterion at the far field, we establish the global unique existence and the large time asymptotic stability of boundary layer (i.e., stationary solution) in some weighted Sobolev spaces by weighted energy method. Moreover, the time-decay rates are also obtained.
引用
收藏
页数:34
相关论文
共 35 条