Variational Bayes for Fast and Accurate Empirical Likelihood Inference

被引:1
|
作者
Yu, Weichang [1 ]
Bondell, Howard D. [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Australia
基金
澳大利亚研究理事会;
关键词
Adjusted empirical likelihood; Bernstein-von-Mises theorem; Empirical likelihood; Fast algorithms; Posterior computation; Stochastic variational Bayes; INTERVALS;
D O I
10.1080/01621459.2023.2169701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a fast and accurate approach to approximate posterior distributions in the Bayesian empirical likelihood framework. Bayesian empirical likelihood allows for the use of Bayesian shrinkage without specification of a full likelihood but is notorious for leading to several computational difficulties. By coupling the stochastic variational Bayes procedure with an adjusted empirical likelihood framework, the proposed method overcomes the intractability of both the exact posterior and the arising evidence lower bound objective, and the mismatch between the exact posterior support and the variational posterior support. The optimization algorithm achieves fast algorithmic convergence by using the variational expected gradient of the log adjusted empirical likelihood function. We prove the consistency of the proposed approximate posterior distribution and an empirical likelihood analogue of the variational Bernstein-von-Mises theorem. Through several numerical examples, we confirm the accuracy and quick algorithmic convergence of our proposed method.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 50 条
  • [1] Updating Variational Bayes: fast sequential posterior inference
    Nathaniel Tomasetti
    Catherine Forbes
    Anastasios Panagiotelis
    Statistics and Computing, 2022, 32
  • [2] Updating Variational Bayes: fast sequential posterior inference
    Tomasetti, Nathaniel
    Forbes, Catherine
    Panagiotelis, Anastasios
    STATISTICS AND COMPUTING, 2022, 32 (01)
  • [3] UNBIASED MLMC-BASED VARIATIONAL BAYES FOR LIKELIHOOD-FREE INFERENCE
    He, Zhijian
    Xu, Zhenghang
    Wang, Xiaoqun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A1884 - A1910
  • [4] Variational Bayes With Intractable Likelihood
    Minh-Ngoc Tran
    Nott, David J.
    Kohn, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 873 - 882
  • [5] Variational Bayes with synthetic likelihood
    Ong, Victor M. H.
    Nott, David J.
    Minh-Ngoc Tran
    Sisson, Scott A.
    Drovandi, Christopher C.
    STATISTICS AND COMPUTING, 2018, 28 (04) : 971 - 988
  • [6] Variational Bayes with synthetic likelihood
    Victor M. H. Ong
    David J. Nott
    Minh-Ngoc Tran
    Scott A. Sisson
    Christopher C. Drovandi
    Statistics and Computing, 2018, 28 : 971 - 988
  • [7] NetRAX: accurate and fast maximum likelihood phylogenetic network inference
    Lutteropp, Sarah
    Scornavacca, Celine
    Kozlov, Alexey M.
    Morel, Benoit
    Stamatakis, Alexandros
    BIOINFORMATICS, 2022, 38 (15) : 3725 - 3733
  • [8] Fast and accurate Bayesian polygenic risk modeling with variational inference
    Zabad, Shadi
    Gravel, Simon
    Li, Yue
    AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (05) : 741 - 761
  • [9] Fast and accurate variational inference for models with many latent variables
    Loaiza-Maya, Ruben
    Smith, Michael Stanley
    Nott, David J.
    Danaher, Peter J.
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 339 - 362
  • [10] Bayes and Empirical Bayes Inference in Changepoint Problems
    Lian, Heng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (03) : 419 - 430