Structural-appearance information fusion for visual tracking

被引:1
|
作者
Zhang, Yuping [1 ]
Yang, Zepeng [1 ]
Ma, Bo [1 ]
Wu, Jiahao [1 ]
Jin, Fusheng [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, 5 South-St Zhongguancun, Beijing 100081, Peoples R China
来源
VISUAL COMPUTER | 2024年 / 40卷 / 05期
基金
中国国家自然科学基金;
关键词
Visual tracking; Siamese networks; Multi-information fusion; NETWORKS;
D O I
10.1007/s00371-023-03013-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work, we propose a visual tracking algorithm based on structural-appearance information fusion that aims to distinguish the target from distractors, including both semantical and visual distractors. It measures the similarity of targets using both appearance information and structural information, with the former extracted from siamese networks and the latter learned from appearance information using a target-cross attention mechanism. The structural and appearance information can be dynamically fused by using a gating recurrent unit, which can control the fusion ratio between them.Additionally, we introduce a similarity matching loss function to explicitly guide feature extraction. Our proposed method can extract discriminative features that facilitate the identification of the target, thus improving tracking performance. Extensive experimental results show that our proposed similarity feature extraction method can improve the tracking performance.
引用
收藏
页码:3103 / 3117
页数:15
相关论文
共 50 条
  • [1] Structural-appearance information fusion for visual tracking
    Yuping Zhang
    Zepeng Yang
    Bo Ma
    Jiahao Wu
    Fusheng Jin
    [J]. The Visual Computer, 2024, 40 : 3103 - 3117
  • [2] Visual Tracking and Segmentation using Appearance and Spatial Information of Patches
    Wang, Junqiu
    Yagi, Yasushi
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 4553 - 4558
  • [3] Structural Local DCT Sparse Appearance Model for Visual Tracking
    Shreyamsha Kumar, B. K.
    Swamy, M. N. S.
    Ahmad, M. Omair
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1194 - 1197
  • [4] Fusion of Spatial and Visual Information for Object Tracking on iPhone
    Heidari, Amin
    Alaei-Novin, Inaz
    Aarabi, Parham
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 630 - 637
  • [5] Visual Tracking via Adaptive Structural Local Sparse Appearance Model
    Jia, Xu
    Lu, Huchuan
    Yang, Ming-Hsuan
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1822 - 1829
  • [6] Metric Learning Based Structural Appearance Model for Robust Visual Tracking
    Wu, Yuwei
    Ma, Bo
    Yang, Min
    Zhang, Jian
    Jia, Yunde
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (05) : 865 - 877
  • [7] LDA BASED COLOR INFORMATION FUSION FOR VISUAL OBJECTS TRACKING
    Qi, Fei
    Song, Xiaowei
    Shi, Guangming
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2201 - 2204
  • [8] Embedding holistic appearance information in part-based adaptive appearance model for robust visual tracking
    Zeng, F. X.
    Huang, Z. T.
    Ji, Y. F.
    [J]. ELECTRONICS LETTERS, 2013, 49 (19) : 1219 - +
  • [9] Robust visual tracking via CAMShift and structural local sparse appearance model
    Zhao, Houqiang
    Xiang, Ke
    Cao, Songxiao
    Wang, Xuanyin
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 34 : 176 - 186
  • [10] Visual Tracking via Coarse and Fine Structural Local Sparse Appearance Models
    Jia, Xu
    Lu, Huchuan
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4555 - 4564