Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM

被引:29
|
作者
Xie, Qilong [1 ]
Liu, Rongchuan [2 ]
Huang, Jihao [1 ]
Su, Jianhui [1 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Coll Civil Engn, Hefei 230009, Peoples R China
关键词
Lithium-ion batteries; RUL prediction; Prior knowledge assistance; Data preprocessing; CEEMDAN algorithm; CNN-LSTM neural network; STATE; PROGNOSTICS;
D O I
10.1016/j.energy.2023.128232
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries have become widely used in many industries due to their outstanding performance, making it vital to accurately predict the remaining useful life (RUL) of these batteries. This will aid in developing energy allocation strategies and ensure the safe use of lithium batteries. To overcome the issue of inaccurate RUL prediction, a new method is proposed that leverages data preprocessing and a prior knowledge-assisted convolutional neural network-long short-term memory neural network (CNN-LSTM). This method utilizes capacity as the health factor and employs complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the capacity sequence, eliminating noise components through data reconstruction. The reconstructed capacity sequence data are then used to pretrain the CNN-LSTM neural network, forming a priori knowledge. Finally, real-time battery capacity data are used to train the prior knowledge-aided CNN-LSTM neural network for real-time RUL prediction of Lithium-ion batteries. The results show that this method significantly improves the RUL prediction accuracy and reduces the prediction error while being more robust than existing methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Predicting the Remaining Life of Lithium-ion Batteries Using a CNN-LSTM Model
    Rastegarpanah, Alireza
    Wang, Yuan
    Stolkin, Rustam
    2022 8TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING (ICMRE 2022), 2022, : 73 - 78
  • [2] CNN-LSTM Based Capacity Eatimation of Lithium-ion Batteries In Charging Profiles
    Pan, Rui
    Huang, Wei
    Tan, Mao
    Wu, Yongli
    Wang, Xinyu
    Fan, Jiazhi
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1220 - 1224
  • [3] Remaining useful life prediction of Lithium-ion batteries based on data preprocessing and CNN-LSSVR algorithm
    Dong, Ti
    Sun, Yiming
    Liu, Jia
    Gao, Qiang
    Zhao, Chunrong
    Cao, Wenjiong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 167
  • [4] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
    Song, Xiangbao
    Yang, Fangfang
    Wang, Dong
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 88894 - 88902
  • [6] Remaining useful life prediction of the lithium-ion battery based on CNN-LSTM fusion model and grey relational analysis
    Chen, Dewang
    Zheng, Xiaoyu
    Chen, Ciyang
    Zhao, Wendi
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 633 - 655
  • [7] An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries
    Xu, Huanwei
    Wu, Lingfeng
    Xiong, Shizhe
    Li, Wei
    Garg, Akhil
    Gao, Liang
    ENERGY, 2023, 276
  • [8] Remaining Useful Life Prediction of Lithium Battery Based on Sequential CNN-LSTM Method
    Li, Dongdong
    Yang, Lin
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (04)
  • [9] A Lithium-Ion Battery Remaining Useful Life Prediction Model Based on CEEMDAN Data Preprocessing and HSSA-LSTM-TCN
    Qiu, Shaoming
    Zhang, Bo
    Lv, Yana
    Zhang, Jie
    Zhang, Chao
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (05):
  • [10] Residual Life prediction of Satellite Lithium-ion Batteries in Orbital Environment
    Yu, Bin
    Yao, Lei
    Zhang, Tao
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 125 - 130