An IMEX-DG solver for atmospheric dynamics simulations with adaptive mesh refinement

被引:8
|
作者
Orlando, Giuseppe [1 ]
Benacchio, Tommaso [2 ]
Bonaventura, Luca [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Leonardo Spa, Future Rotorcraft Technol, I-21017 Samarate, VA, Italy
基金
欧盟地平线“2020”;
关键词
Numerical weather prediction; Adaptive mesh refinement; Discontinuous Galerkin methods; Flows over orography; NAVIER-STOKES EQUATIONS; DISCONTINUOUS GALERKIN METHODS; SPECTRAL ELEMENT; MODEL; COORDINATE; FORMULATIONS; SCHEME;
D O I
10.1016/j.cam.2023.115124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an accurate and efficient solver for atmospheric dynamics simulations that allows for non-conforming mesh refinement. The model equations are the conserva-tive Euler equations for compressible flows. The numerical method is based on an h-adaptive Discontinuous Galerkin spatial discretization and on a second order Additive Runge Kutta IMEX method for time discretization, especially designed for low Mach regimes. The solver is implemented in the framework of the deal.II library, whose mesh refinement capabilities are employed to enhance efficiency. A number of numerical experiments based on classical benchmarks for atmosphere dynamics demonstrate the properties and advantages of the proposed method.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations
    Kopera, Michal A.
    Giraldo, Francis X.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 92 - 117
  • [2] An efficient IMEX-DG solver for the compressible Navier-Stokes equations for non-ideal gases
    Orlando, Giuseppe
    Barbante, Paolo Francesco
    Bonaventura, Luca
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [3] Adaptive mesh refinement for micromagnetics simulations
    Garcia-Cervera, Carlos J.
    Roma, Alexandre M.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (06) : 1648 - 1654
  • [4] A parallel method for adaptive refinement of a Cartesian mesh solver
    Furuyama, S
    Matsuzawa, T
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 395 - 402
  • [5] Multigrid elliptic equation solver with adaptive mesh refinement
    Brown, JD
    Lowe, LL
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (02) : 582 - 598
  • [6] On adaptive mesh refinement for atmospheric pollution models
    Constantinescu, EM
    Sandu, A
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 798 - 805
  • [7] PeleC: An adaptive mesh refinement solver for compressible reacting flows
    de Frahan, Marc T. Henry
    Rood, Jon S.
    Day, Marc S.
    Sitaraman, Hariswaran
    Yellapantula, Shashank
    Perry, Bruce A.
    Grout, Ray W.
    Almgren, Ann
    Zhang, Weiqun
    Bell, John B.
    Chen, Jacqueline H.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (02): : 115 - 131
  • [8] Development of MHD solver based on an adaptive mesh refinement technique
    Pan, Yi
    Zhang, Jie
    Wang, Zeng-Hui
    Ni, Ming-Jiu
    FUSION ENGINEERING AND DESIGN, 2012, 87 (5-6) : 630 - 633
  • [9] Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics
    Cornford, S. L.
    Martin, D. F.
    Lee, V.
    Payne, A. J.
    Ng, E. G.
    ANNALS OF GLACIOLOGY, 2016, 57 (73) : 1 - 9
  • [10] Hydrodynamical Adaptive Mesh Refinement Simulations of Disk Galaxies
    Gibson, Brad K.
    Courty, Stephanie
    Sanchez-Blazquez, Patricia
    Teyssier, Romain
    House, Elisa L.
    Brook, Chris B.
    Kawata, Daisuke
    GALAXY DISK IN COSMOLOGICAL CONTEXT, PROCEEDINGS OF THE 254TH SYMPOSIUM OF THE IAU, 2009, (254): : 445 - +