On the prescribed scalar curvature problem with very degenerate prescribed functions

被引:2
|
作者
Luo, Peng [1 ,2 ]
Peng, Shuangjie [1 ,2 ]
Zhou, Yang [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
关键词
35A01; 35B25; 35J20; 35J60; N PART 1; DELTA-U; S-N; EQUATION; PERTURBATION; EXISTENCE;
D O I
10.1007/s00526-022-02409-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the well known prescribed scalar curvature problem{-delta u=(1+epsilon K(x))u2 & lowast;-1,u(x)> 0, u is an element of D1,2(RN),x is an element of RN,{-delta u=(1+epsilon K(x))u2 & lowast;-1,u(x)> 0, x is an element of RN,u is an element of D-1,D-2(RN),where 2 & lowast;=2NN-22 & lowast;=2NN-2, N >= 5N >= 5, epsilon > 0 epsilon > 0 and K(x)is an element of C1(RN)& cap;L infinity(RN)K(x)is an element of C1(RN)& cap;L infinity(RN). It is known that there are a number of results related to the existence of solutions concentrating at the isolated critical points of K(x). However, if K(x) has non-isolated critical points with different degenerate rates along different directions, whether there exist solutions concentrating at these points is still an open problem. We give a certain positive answer to this problem via applying a blow-up argument based on local Pohozaev identities and modified finite dimensional reduction method when the dimension of critical point set of K(x) ranges from 1 to N-1N-1, which generalizes some results in Cao et al. (Calc Var Partial Differ Equ 15:403-419, 2002) and Li (J Differ Equ 120:319-410, 1995; Commun Pure Appl Math 49:541-597, 1996).
引用
收藏
页数:35
相关论文
共 50 条
  • [1] On the prescribed scalar curvature problem with very degenerate prescribed functions
    Peng Luo
    Shuangjie Peng
    Yang Zhou
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [2] PROBLEM OF THE PRESCRIBED SCALAR CURVATURE
    AUBIN, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 1994, 118 (05): : 465 - 474
  • [3] The Prescribed Chern Scalar Curvature Problem
    Fusi, Elia
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (06)
  • [4] Multiplicity for a problem of prescribed scalar curvature
    Rauzy, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1996, 120 (02): : 153 - 194
  • [5] The Prescribed Chern Scalar Curvature Problem
    Elia Fusi
    The Journal of Geometric Analysis, 2022, 32
  • [6] MULTIPLICITY FOR THE PRESCRIBED SCALAR CURVATURE PROBLEM
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 405 - 413
  • [7] Topological hypothesis for the prescribed scalar curvature problem
    Aubin, T
    Bahri, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10): : 843 - 850
  • [8] Prescribed scalar curvature problem on complete manifolds
    Holcman, D
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (02): : 223 - 244
  • [9] The prescribed scalar curvature problem for polyharmonic operator
    Guo, Yuxia
    Liu, Ting
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (03) : 953 - 982
  • [10] Symmetric solutions for the prescribed scalar curvature problem
    Catrina, F
    Wang, ZQ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2000, 49 (02) : 779 - 813