Hall classes of groups

被引:2
|
作者
de Giovanni, F. [1 ]
Trombetti, M. [1 ]
Wehrfritz, B. A. F. [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Naples, Italy
[2] Queen Mary Univ London, Sch Math Sci, London, England
关键词
Hall class; Nilpotent group; Finite obstruction;
D O I
10.1007/s13398-023-01549-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1958, Philip Hall (Ill J Math 2:787-801, 1958) proved that if a group G has a nilpotent normal subgroup N such that G/N ' is nilpotent, then G is nilpotent. The scope of Hall's nilpotency criterion is not restricted to group theory, and in fact similar statements hold for Lie algebras and more generally for algebraically coherent semiabelian categories (see Chao in Math Z 103:40-42, 1968; Gray in Adv Math 349:911-919, 2019; Stitzinger in Ill J Math 22:499-505, 1978). We say that a group class X is a Hall class if it contains every group G admitting a nilpotent normal subgroup N such that G/N belongs to X. Thus, Hall's nilpotency criterion just asserts that nilpotent groups form a Hall class. Many other relevant classes of groups have been proved to be Hall classes; for example, Plotkin (Sov Math Dokl 2:471-474, 1961) and Robinson (Math Z 107:225-231, 1968) proved that locally nilpotent groups and hypercentral groups form Hall classes. Note that these generalizations also hold if groups are replaced by other algebraic structures, for example Lie algebras (see Stitzinger in Ill J Math 22:499-505, 1978). The aim of this paper is to develop a general theory of Hall classes of groups, that could later be reasonably extended to Lie algebras. Among other results, we prove that many natural types of generalized nilpotent groups form Hall classes, and we give examples showing in particular that the class of groups having a finite term in the lower central series is not a Hall class, even if we restrict to the universe of linear groups.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Hall classes of groups
    F. de Giovanni
    M. Trombetti
    B. A. F. Wehrfritz
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [2] Hall classes in linear groups
    de Giovanni, Francesco
    Trombetti, Marco
    Wehrfritz, Bertram A. F.
    JOURNAL OF GROUP THEORY, 2024, 27 (02) : 383 - 412
  • [3] HALL CLASSES OF GROUPS WITH A LOCALLY FINITE OBSTRUCTION
    DE Giovanni, F.
    Trombetti, M.
    Wehrfritz, B. A. F.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 117 (01) : 16 - 43
  • [4] On the number of classes of conjugate Hall subgroups in finite simple groups
    Revin, D. O.
    Vdovin, E. P.
    JOURNAL OF ALGEBRA, 2010, 324 (12) : 3614 - 3652
  • [5] Quotient groups of groups of certain classes
    Chernikov N.S.
    Trebenko D.Ya.
    Ukrainian Mathematical Journal, 2000, 52 (8) : 1307 - 1309
  • [6] The centrality of groups and classes
    Everett, MG
    Borgatti, SP
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 1999, 23 (03): : 181 - 201
  • [7] CLASSES OF ASSOCIATED GROUPS
    PLAUMANN, P
    ARCHIV DER MATHEMATIK, 1968, 19 (02) : 113 - &
  • [8] Elementary Classes of Groups
    D. V. Osin
    Mathematical Notes, 2002, 72 : 75 - 82
  • [9] UMAP Classes of Groups
    Tarieladze V.
    Journal of Mathematical Sciences, 2014, 197 (6) : 858 - 861
  • [10] On conjugacy classes in groups
    Herzog, Marcel
    Longobardi, Patrizia
    Maj, Mercede
    JOURNAL OF ALGEBRA, 2024, 637 : 112 - 131