Zr/Ti trace Co-doping induced disordered structure to enhance the cycling stability of Li-rich Mn-based layered oxide cathodes

被引:4
|
作者
Zhang, Hong [1 ]
Jiao, Jianyue [1 ]
Zen, Ao [1 ]
Zhao, Enyue [2 ]
Zhao, Jinkui [2 ]
Xiao, Xiaoling [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Li-rich layered oxides; Trace element doping; Disordered structure; Surface Zr enrichment; ELECTROCHEMICAL PERFORMANCE; VOLTAGE-FADE; LITHIUM; ELECTRODES; SPINEL; DISSOLUTION; EVOLUTION; FLUORINE; BEHAVIOR; ACID;
D O I
10.1016/j.electacta.2023.143167
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to the ultrahigh energy density, Li-rich Mn-based layered oxide cathodes have attracted great attentions. However, the irreversible structural transformation usually leads to long-cycled capacity decay, which severely restricts their practical applications. Here, a Zr/Ti trace co-doping strategy is proposed to stabilize the structure and obtain excellent electrochemical performance by constructing bulk phase disorder and surface Zr-enriched structures. The designed Li1.2Mn0.53Ni0.13Co0.13Zr0.005Ti0.005O2 (ZT-LRM) not only shows a higher specific ca-pacity but also achieves an excellent long-cycle performance. The capacity retention of ZT-LRM is 69 % after 500 cycles at 5C (1250 mA g-1), which is much higher than that (34 %) of the Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Neutron powder diffraction and transmission electron microscopy are used to demonstrate the disordered structure in the particles and the line scanning proves the surface Zr enrichment. In-situ X-ray diffraction verifies the more stable structural evolutions of the ZT-LRM during cycling. This simple modification method provides a reference for commercial applications of Li-rich Mn-based layered oxide cathodes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Improvement of the Cycling Stability of Li-Rich Layered Mn-Based Oxide Cathodes Modified by Nanoscale LaPO4 Coating
    Zhang, Xiaohui
    Xie, Xin
    Yu, Ruizhi
    Zhou, Jiarong
    Huang, Yan
    Cao, Shuang
    Wang, Yu
    Tang, Ke
    Wu, Chun
    Wang, Xianyou
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3532 - 3541
  • [2] Interfacial Mn Vacancy for Li-Rich Mn-Based Oxide Cathodes
    Hao, Youchen
    Li, Xifei
    Liu, Wen
    Wang, Jingjing
    Shan, Hui
    Li, Wenbin
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (19) : 22161 - 22169
  • [3] Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design
    Leilei Liu
    Guobiao Su
    Xu Cheng
    Han Han
    Wenjiang Qiang
    Bingxin Huang
    Journal of Solid State Electrochemistry, 2022, 26 : 2379 - 2388
  • [4] Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design
    Liu, Leilei
    Su, Guobiao
    Cheng, Xu
    Han, Han
    Qiang, Wenjiang
    Huang, Bingxin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (11) : 2379 - 2388
  • [5] Remineralization constructs stable surfaces to enhance the cycling stability of Li-rich Mn-based cathode
    Wan, Jing-Zhe
    Ma, Chao
    Gao, Liang
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 691
  • [6] Surface Modification of Li-Rich Mn-Based Layered Oxide Cathodes: Challenges, Materials, Methods, and Characterization
    Lei, Yike
    Ni, Jie
    Hu, Zijun
    Wang, Ziming
    Gui, Fukang
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    Elias, Yuval
    Aurbach, Doron
    Xiao, Qiangfeng
    ADVANCED ENERGY MATERIALS, 2020, 10 (41)
  • [7] Improving electrochemical properties by Na+ doping for Co-Free Li-Rich Mn-based layered oxide
    Yang, Yunqin
    Liang, Qiuming
    Lei, Tianwei
    He, Huan
    Liang, Tianquan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 968
  • [8] Improving the Cycling Stability of Li-Rich Mn-Based Cathodes through Surface Modification of VOPO4
    Xie, Xin
    Li, Heng
    Cao, Shuang
    Wu, Chao
    Li, Zhi
    Chang, Baobao
    Chen, Gairong
    Guo, Xiaowei
    Wu, Tianjing
    Wang, Xianyou
    ENERGY & FUELS, 2021, 35 (17) : 14148 - 14156
  • [9] Tuning Oxygen Redox Chemistry in Li-Rich Mn-Based Layered Oxide Cathodes by Modulating Cation Arrangement
    Zhang, Jicheng
    Cheng, Fangyi
    Chou, Shulei
    Wang, Jianli
    Gu, Lin
    Wang, Heng
    Yoshikawa, Hirofumi
    Lu, Yong
    Chen, Jun
    ADVANCED MATERIALS, 2019, 31 (42)
  • [10] Regulation of both Bulk and Surface Structure by W/S Co-Doping for Li-Rich Layered Cathodes with Remarkable Voltage and Capacity Stability
    Liu, Zhenkun
    Che, Xiangli
    Wang, Wei
    Huang, Gesong
    Huang, Wenjie
    Liu, Chenyu
    Liu, Qi
    Zhu, Ye
    Lin, Zhan
    Luo, Dong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)