In this study, we extract type I collagen from fish scales and employ an electrostatic self-assembly technique to crosslink it with negatively charged graphene. By incorporating 0%, 1%, 5%, and 10% weight of graphene with collagen, we significantly enhance the mechanical strength, conductivity, and 3D porous structure of the scaffolds. The incorporation of graphene increases the Young's modulus of the scaffolds threefold compared to pure collagen scaffolds. Impedance measurements reveal values of 4 k omega, 2.5 k omega, and 1 k omega for scaffolds containing 1%, 5%, and 10% weight of graphene with collagen, respectively. The scaffolds demonstrate cell viability above 90%, and the osteogenic differentiation potential, as determined by ALP assay, confirms successful osteogenesis. Moreover, the eco-friendly synthesis route establishes the hybrid 3D graphene-collagen nanocomposite scaffold as a stable material with excellent biocompatible properties in a biological medium.