Review on the thermal neutrality of application-oriented liquid organic hydrogen carrier for hydrogen energy storage and delivery

被引:7
|
作者
Yang, Yikun [1 ]
Wu, Zhen [1 ]
Li, Ruiqing [1 ]
Wang, Huan [1 ]
Ren, Jianwei [2 ]
Li, Bo [3 ]
Yang, Fusheng [1 ]
Zhang, Zaoxiao [1 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Shaanxi Key Lab Energy Chem Proc Intensificat, Xian 710049, Peoples R China
[2] Univ Johannesburg, Dept Mech Engn Sci, ZA-2092 Johannesburg, South Africa
[3] Univ Kent, Sch Engn, Canterbury CT2 7NZ, Kent, England
[4] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
LOHC; Thermal neutrality; Heat intensification; Exhaust heat recirculation; Hydrogen transfer; MEMBRANE FUEL-CELL; CATALYTIC DEHYDROGENATION; MICROWAVE; SYSTEMS; LOHC; INTEGRATION; PERFORMANCE; FUTURE; REACTOR; RELEASE;
D O I
10.1016/j.rineng.2023.101394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean, renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen, as an extraordinary secondary energy, is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal, while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context, liquid organic hydrogen carrier (LOHC), among a series of storage methods such as compressed and liquefied hydrogen, provokes a considerable amount of research in-terest, since it is proven to be a suitable carrier for hydrogen with safety and stability. However, the dehydro-genation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption, which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work, several strategies of heat intensification and management for LOHC system, including the microwave irradiation, circulation of exhaust heat and direct LOHC fuel cell, are summarized and analyzed to provide suggestions and directions for future research.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Reliability of liquid organic hydrogen carrier-based energy storage in a mobility application
    Uhrig, Felix
    Kadar, Julian
    Mueller, Karsten
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (06) : 2044 - 2053
  • [2] Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology-A review
    Chu, Chenyang
    Wu, Kai
    Luo, Bingbing
    Cao, Qi
    Zhang, Huiyan
    CARBON RESOURCES CONVERSION, 2023, 6 (04) : 334 - 351
  • [3] Thermal design and heat transfer optimisation of a liquid organic hydrogen carrier batch reactor for hydrogen storage
    Gambini, Marco
    Guarnaccia, Federica
    Manno, Michele
    Vellini, Michela
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (96) : 37625 - 37636
  • [4] Resilience of Liquid Organic Hydrogen Carrier Based Energy-Storage Systems
    Ruede, Timo
    Boesmann, Andreas
    Preuster, Patrick
    Wasserscheid, Peter
    Arlt, Wolfgang
    Mueller, Karsten
    ENERGY TECHNOLOGY, 2018, 6 (03) : 529 - 539
  • [5] Potential Deployment and Integration of Liquid Organic Hydrogen Carrier Technology within Different Industries Liquid organic hydrogen carrier technology to support on demand hydrogen supply and energy storage
    Southall, Emma
    Lukashuk, Liliana
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2022, 66 (03): : 259 - 270
  • [6] Methylbenzyl Naphthalene: Liquid Organic Hydrogen Carrier for Facile Hydrogen Storage and Release
    Rao, Purna Chandra
    Kim, Yongseok
    Kim, Hyeonsu
    Son, Younghu
    Choi, Yuyeol
    Na, Kyungsu
    Yoon, Minyoung
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (34) : 12656 - 12666
  • [7] Hydrogen flow rate control in a liquid organic hydrogen carrier batch reactor for hydrogen storage
    Gambini, Marco
    Guarnaccia, Federica
    Manno, Michele
    Vellini, Michela
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 329 - 339
  • [8] Application-oriented hydrolysis reaction system of solid-state hydrogen storage materials for high energy density target: A review
    Jing Yao
    Zhen Wu
    Huan Wang
    Fusheng Yang
    Jianwei Ren
    Zaoxiao Zhang
    Journal of Energy Chemistry , 2022, (11) : 218 - 238
  • [9] Application-oriented hydrolysis reaction system of solid-state hydrogen storage materials for high energy density target: A review
    Yao, Jing
    Wu, Zhen
    Wang, Huan
    Yang, Fusheng
    Ren, Jianwei
    Zhang, Zaoxiao
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 218 - 238
  • [10] Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage
    Mah, Angel Xin Yee
    Ho, Wai Shin
    Hassim, Mimi H.
    Hashim, Haslenda
    Liew, Peng Yen
    Ab Muis, Zarina
    ENERGY, 2021, 218