Reweighted variational full-waveform inversions

被引:0
|
作者
Wang, Wenlong [1 ,2 ,3 ,4 ]
McMechan, George A. [5 ]
Ma, Jianwei [6 ]
机构
[1] State Key Lab Shale Oil & Gas Enrichment Mech & Ef, Beijing, Peoples R China
[2] SinoPEC Key Lab Seism Elast Wave Technol, Beijing, Peoples R China
[3] Harbin Inst Technol, Ctr Geophys, Dept Math, Harbin, Peoples R China
[4] Harbin Inst Technol, Inst Artificial Intelligence, Harbin, Peoples R China
[5] Univ Texas Dallas, Ctr Lithospher Studies, Richardson, TX USA
[6] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
GAUSS-NEWTON; TOMOGRAPHY; INFORMATION; FRAMEWORK; GRADIENT;
D O I
10.1190/GEO2021-0766.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Starting from an initial model and predefined priors, a distributions of model parameters via optimization using a Bayesian theorem. Thus, VFWI is useful in estimating uncertainties in full-waveform inversions (FWIs). However, the resolution of the inverted models from VFWIs is usually not as good as those from conventional FWIs. We decompose the loss function in a VFWI into two terms: the complexity cost and the data misfit. The data variance, which balances these two terms, is expected to decrease during an iterative optimization to gradually put higher weight on the data misfit. We develop and compare two reweighting schemes in VFWI that can produce high-resolution velocity models and the associated uncertainties. Inversions are performed efficiently in a deep-learning framework to take advantage of automatic differentiation. Tests using synthetic data and blind data indicate that reweighted VFWIs are less sensitive to initial models and can generate inversion results that have higher resolution than those from conventional FWIs.
引用
收藏
页码:R499 / R512
页数:14
相关论文
共 50 条
  • [1] Variational full-waveform inversion
    Zhang, Xin
    Curtis, Andrew
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 406 - 411
  • [2] Variational full-waveform inversion
    Zhang X.
    Curtis A.
    [J]. Geophysical Journal International, 2021, 222 (01): : 406 - 411
  • [3] Source-domain full-waveform inversions
    Wu, Yulang
    McMechan, George A.
    [J]. GEOPHYSICS, 2021, 86 (01) : R147 - R159
  • [4] Double-difference measurements in global full-waveform inversions
    Orsvuran, Ridvan
    Bozdag, Ebru
    Modrak, Ryan
    Lei, Wenjie
    Ruan, Youyi
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 220 (01) : 661 - 680
  • [5] WISE: Full-waveform variational inference via subsurface extensions
    Yin, Ziyi
    Orozco, Rafael
    Louboutin, Mathias
    Herrmann, Felix J.
    [J]. GEOPHYSICS, 2024, 89 (04) : A23 - A28
  • [6] Waveform Simulation of Full-Waveform LIDAR
    Kim, Seongjoon
    Lee, Lmpyeong
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (01) : 9 - 20
  • [7] Evolutionary full-waveform inversion
    van Herwaarden, Dirk Philip
    Afanasiev, Michael
    Thrastarson, Solvi
    Fichtner, Andreas
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (01) : 306 - 311
  • [8] Interferometric full-waveform inversion
    Sinha, Mrinal
    Schuster, Gerard T.
    [J]. GEOPHYSICS, 2019, 84 (01) : R45 - R60
  • [9] Simulating full-waveform LIDAR
    Kim, Angela M.
    Olsen, Richard C.
    Borges, Carlos F.
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XV, 2010, 7684
  • [10] SIMULATION OF FULL-WAVEFORM LASER ALTIMETER ECHO WAVEFORM
    Lv, Y.
    Tong, X. H.
    Liu, S. J.
    Xie, H.
    Luan, K. F.
    Liu, J.
    [J]. XXIII ISPRS CONGRESS, COMMISSION I, 2016, 41 (B1): : 47 - 51