Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach

被引:5
|
作者
Dubey, Richa [1 ]
Guruviah, Velmathi [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Chennai 600127, Tamil Nadu, India
关键词
Biomass; Higher heating value; Ensemble machine learning; Proximate analysis; Smart modeling; ARTIFICIAL NEURAL-NETWORKS; PROXIMATE ANALYSIS; PERFORMANCE; ANFIS; HHV;
D O I
10.1007/s13369-022-07346-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.
引用
下载
收藏
页码:9329 / 9338
页数:10
相关论文
共 50 条
  • [1] Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach
    Richa Dubey
    Velmathi Guruviah
    Arabian Journal for Science and Engineering, 2023, 48 : 9329 - 9338
  • [2] Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques
    Garcia Nieto, P. J.
    Garcia-Gonzalo, E.
    Paredes-Sanchez, J. P.
    Bernardo Sanchez, A.
    Menendez Fernandez, M.
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 8823 - 8836
  • [3] Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques
    P. J. García Nieto
    E. García-Gonzalo
    J. P. Paredes-Sánchez
    A. Bernardo Sánchez
    M. Menéndez Fernández
    Neural Computing and Applications, 2019, 31 : 8823 - 8836
  • [4] Machine learning approach for categorical biomass higher heating value prediction based on proximate analysis
    Dubey, Richa
    Guruviah, Velmathi
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 3381 - 3394
  • [5] RETRACTED ARTICLE: Machine learning prediction of higher heating value of biomass
    Zuocai Dai
    Zhengxian Chen
    Abdellatif Selmi
    Kittisak Jermsittiparsert
    Nebojša M. Denić
    Zoran Nеšić
    Biomass Conversion and Biorefinery, 2023, 13 : 3659 - 3667
  • [6] Retraction Note: Machine learning prediction of higher heating value of biomass
    Zuocai Dai
    Zhengxian Chen
    Abdellatif Selmi
    Kittisak Jermsittiparsert
    Nebojša M. Denić
    Zoran Nešić
    Biomass Conversion and Biorefinery, 2023, 13 : 15309 - 15309
  • [7] Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes
    Afolabi, Inioluwa Christianah
    Epelle, Emmanuel, I
    Gunes, Burcu
    Gulec, Fatih
    Okolie, Jude A.
    CLEAN TECHNOLOGIES, 2022, 4 (04): : 1227 - 1241
  • [8] Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass
    Brandic, Ivan
    Pezo, Lato
    Bilandzija, Nikola
    Peter, Anamarija
    Suric, Jona
    Voca, Neven
    MATHEMATICS, 2023, 11 (09)
  • [9] Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques
    Garcia Nieto, P. J.
    Garcia-Gonzalo, E.
    Sanchez Lasheras, F.
    Paredes-Sanchez, J. P.
    Riesgo Fernandez, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 284 - 301
  • [10] Biomass Higher Heating Value Estimation: A Comparative Analysis of Machine Learning Models
    Brandic, Ivan
    Pezo, Lato
    Voca, Neven
    Matin, Ana
    ENERGIES, 2024, 17 (09)