Modeling Alzheimers' Disease Progression from Multi-task and Self-supervised Learning Perspective with Brain Networks

被引:1
|
作者
Liang, Wei [1 ,2 ]
Zhang, Kai [1 ,2 ]
Cao, Peng [1 ,2 ,3 ]
Zhao, Pengfei [4 ]
Liu, Xiaoli [5 ]
Yang, Jinzhu [1 ,2 ,3 ]
Zaiane, Osmar R. [6 ]
机构
[1] Northeastern Univ, Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Natl Frontiers Sci Ctr Ind Intelligence & Syst Op, Shenyang 110819, Peoples R China
[4] Nanjing Med Univ, Affiliated Brain Hosp, Nanjing, Peoples R China
[5] DAMO Acad, Alibaba Grp, Hangzhou, Peoples R China
[6] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
基金
中国国家自然科学基金;
关键词
Self-supervised learning; Multi-task learning; Cognitive scores; Brain networks; Longitudinal prediction; DIAGNOSIS;
D O I
10.1007/978-3-031-43907-0_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a common irreversible neurodegenerative disease among elderlies. Establishing relationships between brain networks and cognitive scores plays a vital role in identifying the progression of AD. However, most of the previous works focus on a single time point, without modeling the disease progression with longitudinal brain networks data. Besides, the longitudinal data is insufficient for sufficiently modeling the predictive models. To address these issues, we propose a Self-supervised Multi-Task learning Progression model SMP-Net for modeling the relationship between longitudinal brain networks and cognitive scores. Specifically, the proposed model is trained in a self-supervised way by designing a masked graph auto-encoder and a temporal contrastive learning that simultaneously learn the structural and evolutional features from the longitudinal brain networks. Furthermore, we propose a temporal multi-task learning paradigm to model the relationship among multiple cognitive scores prediction tasks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset show the effectiveness of our method and achieve consistent improvements over state-of-the-art methods in terms of Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC) and Concordance Correlation Coefficient (CCC). Our code is available at https://github.com/IntelliDAL/Graph/tree/main/SMP-Net.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 50 条
  • [1] Multi-task Self-Supervised Visual Learning
    Doersch, Carl
    Zisserman, Andrew
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2070 - 2079
  • [2] Multi-task Semantic Matching with Self-supervised Learning
    Chen Y.
    Qiu X.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (01): : 83 - 90
  • [3] Multi-task Self-Supervised Adaptation for Reinforcement Learning
    Wu, Keyu
    Chen, Zhenghua
    Wu, Min
    Xiang, Shili
    Jin, Ruibing
    Zhang, Le
    Li, Xiaoli
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 15 - 20
  • [4] Multi-Task Self-Supervised Learning for Disfluency Detection
    Wang, Shaolei
    Che, Wanxiang
    Liu, Qi
    Qin, Pengda
    Liu, Ting
    Wang, William Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9193 - 9200
  • [5] MULTI-TASK SELF-SUPERVISED LEARNING FOR ROBUST SPEECH RECOGNITION
    Ravanelli, Mirco
    Zhong, Jianyuan
    Pascual, Santiago
    Swietojanski, Pawel
    Monteiro, Joao
    Trmal, Jan
    Bengio, Yoshua
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6989 - 6993
  • [6] Self-supervised multi-task learning for medical image analysis
    Yu, Huihui
    Dai, Qun
    PATTERN RECOGNITION, 2024, 150
  • [7] Multi-task self-supervised learning for human activity detection
    Saeed, Aaqib
    Ozcelebi, Tanir
    Lukkien, Johan
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3 (02)
  • [8] Multi-Task Self-Supervised Learning for Script Event Prediction
    Zhou, Bo
    Chen, Yubo
    Liu, Kang
    Zhao, Jun
    Xu, Jiexin
    Jiang, Xiaojian
    Li, Jinlong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3662 - 3666
  • [9] A MULTI-TASK SELF-SUPERVISED LEARNING FRAMEWORK FOR SCOPY IMAGES
    Li, Yuexiang
    Chen, Jiawei
    Zheng, Yefeng
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 2005 - 2009
  • [10] ProteinGLUE multi-task benchmark suite for self-supervised protein modeling
    Henriette Capel
    Robin Weiler
    Maurits Dijkstra
    Reinier Vleugels
    Peter Bloem
    K. Anton Feenstra
    Scientific Reports, 12