Monte-Carlo simulation of charge sharing in 2 mm thick pixelated CdTe sensor

被引:0
|
作者
Jirsa, J. [1 ,2 ]
Gecnuk, J. [1 ]
Janoska, Z. [1 ]
Jakovenko, J. [2 ]
Kafka, V. [1 ]
Marcisovsky, M. [1 ]
Marcisovska, M. [1 ]
Stanek, P. [1 ]
Tomasek, L. [1 ]
Vancura, P. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Brehova 7, Prague, 11519, Czech Republic
[2] Czech Tech Univ, Fac Elect Engn, Dept Microelect, Tech 2, Prague 16627, Czech Republic
关键词
Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc.); Gamma detectors (scintillators; CZT; HPGe; HgI etc.); Hybrid detectors; X-ray detectors;
D O I
10.1088/1748-0221/18/02/C02033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Precise physical models of sensors are essential for developing high precision pixelated detectors. Advanced technologies allowed pixel electronics to be integrated in tens of micrometers pixel pitch. Such fine pixelated detectors suffer from charge sharing effect and, in high-Z materials, also from fluorescent photons traversing one or more pixels. This work presents a Monte-Carlo model of a 2 mm thick 70 mu m pitch pixelated CdTe sensor designed for simulation of the absorption of X-ray photons from monochromatic X-ray photon beams. Charge diffusion across a pixel matrix was computed using a drift-diffusion model for each photon generating free electron-hole pairs. Based on the simulation outcome, we estimated the dependence of cluster size on photon energy and total charge distribution between neighboring pixels.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A spectroscopic Monte-Carlo model to simulate the response of pixelated CdTe based detectors
    Koch-Mehrin, K. A. L.
    Lees, J. E.
    Bugby, S. L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 976
  • [2] Simulation of charge transport in pixelated CdTe
    Kolstein, M.
    Arino, G.
    Chmeissani, M.
    De Lorenzo, G.
    JOURNAL OF INSTRUMENTATION, 2014, 9
  • [3] Monte-Carlo simulation of a thick lens IOL power calculation
    Langenbucher, Achim
    Szentmary, Nora
    Cayless, Alan
    Gatinel, Damien
    Debellemaniere, Guillaume
    Wendelstein, Jascha
    Hoffmann, Peter
    ACTA OPHTHALMOLOGICA, 2024, 102 (01) : e42 - e52
  • [4] MONTE-CARLO SIMULATION OF THE CHARGE-TRANSFER REACTION IN A PLASMA
    CUPINI, E
    DEMATTEIS, A
    SIMONINI, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (01) : 122 - 129
  • [5] MONTE-CARLO SIMULATION OF CHARGE TRANSPORT IN SEMICONDUCTOR-DEVICES
    LUGLI, P
    MICROELECTRONIC ENGINEERING, 1992, 19 (1-4) : 275 - 282
  • [6] MONTE-CARLO SIMULATION OF SPACE-CHARGE INJECTION FET
    FAUQUEMBERGUE, R
    PERNISEK, M
    CONSTANT, E
    ELECTRONICS LETTERS, 1982, 18 (15) : 670 - 671
  • [7] MONTE-CARLO STUDY OF THE LIQUID CDTE SURFACE
    WANG, ZQ
    STROUD, D
    MARKWORTH, AJ
    PHYSICAL REVIEW B, 1989, 40 (05): : 3129 - 3132
  • [8] Monte-Carlo simulation on discrete space charge effects of space charge lenses
    Tang, T
    Orloff, J
    Wang, L
    OPTIK, 1996, 102 (04): : 141 - 146
  • [9] MONTE-CARLO SIMULATION OF THE CAF2
    MONTANI, RA
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (11): : 8381 - 8384
  • [10] MONTE-CARLO SIMULATION OF WATER
    LADD, AJC
    MOLECULAR PHYSICS, 1977, 33 (04) : 1039 - 1050