Design of a room-temperature topological exciton-polariton laser in a ZnO/TiO2 photonic crystal slab

被引:1
|
作者
Septembre, I. [1 ]
Leblanc, C. [1 ]
Hermet, L. [1 ]
Nguyen, H. S. [2 ,3 ]
Letartre, X. [2 ]
Solnyshkov, D. D. [1 ,3 ]
Malpuech, G. [1 ]
机构
[1] Univ Clermont Auvergne, Inst Pascal, Clermont Auvergne INP, CNRS, F-63000 Clermont Ferrand, France
[2] Univ Lyon, Univ Claude Bernard Lyon 1, Ecole Cent Lyon, INSA Lyon,CPE Lyon,CNRS,INL,UMR5270, F-69130 Ecully, France
[3] Inst Univ France IUF, F-75231 Paris, France
基金
欧盟地平线“2020”;
关键词
Compendex;
D O I
10.1103/PhysRevB.107.155304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose theoretically a scheme to get a room-temperature two-dimensional topological exciton-polariton laser with propagating topological lasing modes. The structure uses guided modes in a photonic crystal slab. A ZnO layer provides strong excitonic resonances stable at room temperature. It is capped by a TiO2 layer pierced by a triangular lattice of air holes. The exciton-polariton modes of the three-dimensional structure are computed by solving numerically Maxwell's equations including the excitonic response. The designed triangular lattice of circular air holes shows a transverse electric band gap. The triangular lattice of air holes is shown to be well described by a staggered honeycomb tight-binding lattice, associated with valley Chern numbers defining the interface states. The interface between two shifted triangular lattices of air holes supports two counterpropagating modes lying in the gap of the bulk modes, analogous to quantum pseudospin Hall interface states. These modes show orthogonal polarizations. They can be selectively excited using polarized excitation and are well protected from backscattering. These modes can benefit from the exciton-polariton gain at room temperature because of their sufficiently large exciton fraction and favorable position in energy. The strong localization of these propagating modes makes them suitable to host topological lasing triggered by a nonresonant pump localized on the interface.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Exciton-polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO
    Chichibu, SF
    Uedono, A
    Tsukazaki, A
    Onuma, T
    Zamfirescu, M
    Ohtomo, A
    Kavokin, A
    Cantwell, G
    Litton, CW
    Sota, T
    Kawasaki, M
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (04) : S67 - S77
  • [2] Theory of exciton-polariton lasing at room temperature in ZnO microcavities
    Johne, R.
    Solnyshkov, D. D.
    Malpuech, G.
    APPLIED PHYSICS LETTERS, 2008, 93 (21)
  • [3] Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing
    Kedziora, Mateusz
    Opala, Andrzej
    Mastria, Rosanna
    De Marco, Luisa
    Krol, Mateusz
    Lempicka-Mirek, Karolina
    Tyszka, Krzysztof
    Ekielski, Marek
    Guziewicz, Marek
    Bogdanowicz, Karolina
    Szerling, Anna
    Sigurosson, Helgi
    Czyszanowski, Tomasz
    Szczytko, Jacek
    Matuszewski, Michal
    Sanvitto, Daniele
    Pietka, Barbara
    NATURE MATERIALS, 2024, 23 (11) : 1515 - 1522
  • [4] Exciton-polariton room-temperature Bose-Einstein condensate
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2021, 64 (07) : 743 - 743
  • [5] Room-temperature exciton-polariton and photonic lasing in GaN/InGaN core-shell microrods
    Li, Junchao
    Chen, Huanqing
    Yu, Guo
    Lei, Menglai
    Li, Shunkun
    Hu, Xiaodong
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [6] Polariton laser based on a ZnO photonic crystal slab
    Solnyshkov, D. D.
    Weiss, T.
    Malpuech, G.
    Gippius, N. A.
    APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [7] Exciton-polariton formation at room temperature in a planar ZnO resonator structure
    Schmidt-Grund, R.
    Rheinlaender, B.
    Czekalla, C.
    Benndorf, G.
    Hochmuth, H.
    Lorenz, M.
    Grundmann, M.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (2-3): : 331 - 337
  • [8] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature*
    Zheng, Huying
    Chen, Zhiyang
    Zhu, Hai
    Tang, Ziying
    Wang, Yaqi
    Wei, Haiyuan
    Shan, Chongxin
    CHINESE PHYSICS B, 2020, 29 (09)
  • [9] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
    郑湖颖
    陈智阳
    朱海
    汤梓荧
    王亚琪
    韦海园
    单崇新
    Chinese Physics B, 2020, 29 (09) : 211 - 215
  • [10] Room-Temperature Exciton-Polariton Condensation in a Tunable Zero-Dimensional Microcavity
    Scafirimuto, Fabio
    Urbonas, Darius
    Scherf, Ullrich
    Mahrt, Rainer F.
    Stoeferle, Thilo
    ACS PHOTONICS, 2018, 5 (01): : 85 - 89