Ideal acoustic quantum spin Hall phase in a multi-topology platform

被引:16
|
作者
Sun, Xiao-Chen [1 ,2 ,3 ]
Chen, Hao [1 ,2 ]
Lai, Hua-Shan [1 ,2 ]
Xia, Chu-Hao [1 ,2 ]
He, Cheng [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
EDGE STATES; TRANSITION; INSULATOR;
D O I
10.1038/s41467-023-36511-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fermionic time-reversal symmetry (T-f)-protected quantum spin Hall (QSH) materials feature gapless helical edge states when adjacent to arbitrary trivial cladding materials. However, due to symmetry reduction at the boundary, bosonic counterparts usually exhibit gaps and thus require additional cladding crystals to maintain robustness, limiting their applications. In this study, we demonstrate an ideal acoustic QSH with gapless behaviour by constructing a global T-f on both the bulk and the boundary based on bilayer structures. Consequently, a pair of helical edge states robustly winds several times in the first Brillouin zone when coupled to resonators, promising broadband topological slow waves. We further reveal that this ideal QSH phase behaves as a topological phase transition plane that bridges trivial and higher-order phases. Our versatile multi-topology platform sheds light on compact topological slow-wave and lasing devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ideal acoustic quantum spin Hall phase in a multi-topology platform
    Xiao-Chen Sun
    Hao Chen
    Hua-Shan Lai
    Chu-Hao Xia
    Cheng He
    Yan-Feng Chen
    Nature Communications, 14
  • [2] Hyperbolic multi-topology and the basic principle in quantum mechanics
    Yu Xuegang
    Advances in Applied Clifford Algebras, 1999, 9 (1) : 109 - 118
  • [3] Topology-induced phase transitions in quantum spin Hall lattices
    Bercioux, D.
    Goldman, N.
    Urban, D. F.
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [4] Miniaturized multi-topology acoustic source localization network based on intelligent microsystem
    Xiong, Chengsong
    Lu, Wenshuai
    Zhao, Xiaoguang
    You, Zheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 345
  • [5] Exciton topology and condensation in a model quantum spin Hall insulator
    Blason, Andrea
    Fabrizio, Michele
    PHYSICAL REVIEW B, 2020, 102 (03)
  • [6] Band topology and the quantum spin Hall effect in bilayer graphene
    Prada, E.
    San-Jose, P.
    Brey, L.
    Fertig, H. A.
    SOLID STATE COMMUNICATIONS, 2011, 151 (16) : 1075 - 1083
  • [7] Quantum spin Hall phase in multilayer graphene
    Garcia-Martinez, N. A.
    Lado, J. L.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [8] Phase diagram of the spin quantum Hall transition
    Kagalovsky, V.
    Nemirovsky, D.
    LOW TEMPERATURE PHYSICS, 2018, 44 (11) : 1219 - 1220
  • [9] Acoustic measurements of the stripe and the bubble quantum Hall phase
    Msall, M. E.
    Dietsche, W.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] TOPOLOGICAL QUANTUM PHASE TRANSITION BETWEEN QUANTUM SPIN HALL STATE AND QUANTUM ANOMALOUS HALL STATE
    Liu, Lan-Feng
    Kou, Su-Peng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (17): : 2323 - 2340