Inversion of the Gravity Gradiometry Data by ResUnet Network: An Application in Nordkapp Basin, Barents Sea

被引:9
|
作者
Xu, Zhengwei [1 ]
Wang, Rui [2 ]
Zhdanov, Michael S. [3 ]
Wang, Xuben [1 ]
Li, Jun [1 ]
Zhang, Bing [1 ]
Liang, Shengxian [1 ]
Wang, Yang [4 ]
机构
[1] Chengdu Univ Technol, Coll Geophys, Key Lab Earth Explorat & Informat Tech, Minist Educ, Chengdu 610059, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130022, Peoples R China
[3] Univ Utah, Consortium Electromagnet Modeling & Invers CEMI, Salt Lake City, UT 84112 USA
[4] SINOPEC Geophys Res Inst, Key Lab Geophys, Nanjing, 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Gravity; Training; Feature extraction; Three-dimensional displays; Geology; Solid modeling; Inverse problems; 3-D inversion; gravity and gravity gradiometry (GG); ResUnet; 3D INVERSION; FOCUSING INVERSION; LARGE-SCALE; BASEMENT; FIELDS;
D O I
10.1109/TGRS.2023.3271606
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study and assessment of the subsurface density distribution are vital for mining and oil and gas exploration. This can be achieved by the 3-D inversion of the observed gravity and gravity gradiometry (GG) data. Due to the ill-posedness of the geophysical inverse problem, the nonuniqueness and instability of solutions represent the main difficulties in inversion. In recent years, convolutional neural networks, especially U-net technology, have found wide applications in image processing, recognition, and reconstruction. This article proposes using this method for fast reconstruction of the subsurface density models based on the ResUnet technology. The developed new method was examined on two 3-D synthetic gravity and GG datasets inversion. The results show that the ResUnet network can reconstruct the density anomaly with sharp boundaries and is robust to the noise, making the solution stable.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Focusing iterative migration of gravity gradiometry data acquired in the Nordkapp Basin, Barents Sea
    Xu, Zhengwei
    Wan, Le
    Zhdanov, Michael S.
    [J]. GEOPHYSICAL PROSPECTING, 2020, 68 (07) : 2292 - 2306
  • [2] Employing MS-UNets Networks for Multiscale 3-D Gravity Data Inversion: A Case Study in the Nordkapp Basin, Barents Sea
    Wang, Rui
    Ding, Yaming
    Xu, Zhengwei
    Zhdanov, Michael S.
    Xian, Minghao
    Zhang, Yu
    Li, Jun
    Jiang, Chao
    Guo, Ziqing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [3] THE NORDKAPP BASIN, A MAJOR SALT FEATURE IN THE SW BARENTS SEA
    LIND, E
    [J]. NORSK GEOLOGISK TIDSSKRIFT, 1987, 67 (04): : 435 - 435
  • [4] Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea
    Rojo, Luis Alberto
    Cardozo, Nestor
    Escalona, Alejandro
    Koyi, Hemin
    [J]. AAPG BULLETIN, 2019, 103 (09) : 2177 - 2217
  • [5] Improved salt imaging in a basin context by high resolution potential field data: Nordkapp Basin, Barents Sea
    Stadtler, Christopher
    Fichler, Christine
    Hokstad, Ketil
    Myrlund, Eva Andrea
    Wienecke, Susann
    Fotland, Bente
    [J]. GEOPHYSICAL PROSPECTING, 2014, 62 (03) : 615 - 630
  • [6] Magnetic Field Imaging of Salt Structures at Nordkapp Basin, Barents Sea
    Paoletti, V
    Milano, M.
    Baniamerian, J.
    Fedi, M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (18)
  • [7] Adaptive multinary inversion of gravity and gravity gradiometry data
    Zhdanov, Michael S.
    Lin, Wei
    [J]. GEOPHYSICS, 2017, 82 (06) : Q101 - Q114
  • [8] Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea
    Bugge, T
    Elvebakk, G
    Fanavoll, S
    Mangerud, G
    Smelror, M
    Weiss, HM
    Gjelberg, J
    Kristensen, SE
    Nilsen, K
    [J]. MARINE AND PETROLEUM GEOLOGY, 2002, 19 (01) : 13 - 37
  • [9] Early Tertiary sedimentation and salt tectonics in the Nordkapp Basin, southern Barents Sea
    Henriksen, S
    Vorren, TO
    [J]. NORSK GEOLOGISK TIDSSKRIFT, 1996, 76 (01): : 33 - 44
  • [10] Combined Compact and Smooth Inversion for Gravity and Gravity Gradiometry Data
    Chen, Zhaoxi
    Zhang, Xuxin
    Chen, Zidan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60